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The entanglement between two parts of a many-body system can be characterized in detail by the
entanglement spectrum. Focusing on gapped phases of several one-dimensional systems, we show how
this spectrum is dominated by contributions from the boundary between the parts. This contradicts the
view of an “‘entanglement Hamiltonian™ as a bulk entity. The boundary-local nature of the entanglement
spectrum is clarified through its hierarchical level structure, through the combination of two single-
boundary spectra to form a two-boundary spectrum, and finally through consideration of dominant
eigenfunctions of the entanglement Hamiltonian. We show consequences of boundary-locality for
perturbative calculations of the entanglement spectrum.
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Introduction.—The study of entanglement-related quan-
tities in condensed matter has led to a large body of
interdisciplinary work [1]. Recently, the concept of the
entanglement spectrum has established itself at the fore-
front of the field, as this spectrum provides much finer
information than a single number like the von Neumann
entropy. Considering a bipartition of the system into parts
A and B, the entanglement spectrum (ES), {£;}, is defined
in terms of the Schmidt decomposition

L) =D e 62ty ® |yh). (1)
Here, |i) is the ground state, and the states |4) (|i45))
form an orthonormal basis for the subsystem A (B). The ES
{&; = —logA;} can also be thought of in terms of the
eigenvalues {A;} of the reduced density matrix p, obtained
after tracing out the B part of the system density matrix
[ ).

The ES has been studied earlier for insights into the
density matrix renormalization group (DMRG) algorithm
[2—4] and more recently because of its relation to low-
energy boundary-related modes in topological phases
[5-7]. One way of thinking of the ES is in terms of an
entanglement Hamiltonian (EH) H, = —logp, acting
only on the A degrees of freedom [3,9-12]. The ES is then
the spectrum of this object. This gives a suggestive corre-
spondence to the energy spectrum of true bulk
Hamiltonians. This idea has also inspired calculations of
bulk terms that appear in such a “Hamiltonian’ [3,9]. In
topologically ordered systems such as fractional quantum
Hall states, the EH indeed seems to share the low-lying edge
modes with the physical Hamiltonian of a system with the
same boundary. This correspondence gave rise to the loose
idea that entanglement Hamiltonians are quite similar to
physical “bulk’ Hamiltonians, apart perhaps from nones-
sential renormalizations, such as longer range hoppings or
spatial inhomogeneities [5,6]. However, the well-known
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area law for the entanglement entropy S, = — 3 A; logA;,
stating that S, scales with the size of the boundary between
A and B parts, clearly suggests that the spectrum of p4 (and
hence also the ES and EH) must in some sense be dominated
by the boundary degrees of freedom.

This contradiction is highlighted even more by consid-
ering states that are described by simple matrix product
states, such as the Majumdar-Ghosh point in the frustrated
antiferromagnetic chain (J;-J, model) or the AKLT
(Affleck-Kennedy-Lieb-Tasaki) state [13]. The entangle-
ment spectrum for these states consists only of a small
number of finite values, independent of the (sufficiently
large) block size A. These simple gapped states thus clearly
have entanglement spectra determined completely by the
boundary and not by the bulk.

In this Letter, we sharpen the boundary picture of the
entanglement spectrum by considering more general
gapped one-dimensional (1D) systems. The boundary-
local nature of the ES is demonstrated and made quantita-
tive in several ways. We show that the ES of gapped states
generally have a hierarchical structure, with excitations
farther from the boundary being successively higher in
the ES. This also leads us to the idea that the ES can be
obtained from a boundary-connected perturbative calcula-
tion, and we show elements of such a calculation. We also
show that the ES of two-boundary blocks can be con-
structed by combining the ES of single-boundary blocks,
demonstrating that the bulk degrees of freedom play a
secondary role. We will concentrate on the widely familiar
XXZ chain, and as a bonus, we uncover a beautiful set of
degeneracy structures in the ES of this model. We believe
these findings are very general; we emphasize this by
briefly presenting boundary-locality in two other systems,
namely, the Heisenberg ladder and the Mott insulating
phase of the Bose-Hubbard model.

In our examples we consider perturbations around a
product state; it should be possible to adapt to perturbations
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around a point which is a matrix product state with small-
rank matrices. Gapped 1D phases often contain or are
connected to such simple points. Gapped phases in general
are not very universal in their low-energy properties; it is
therefore remarkable that the ES has features common in
many gapped phases, which we identify in this work.

The usual methods for calculating ES are numerical
exact diagonalization or DMRG, or using two-point cor-
relators for noninteracting systems [2]. We propose our
boundary-linked perturbation theory as a general alternate
technique for calculating ES in gapped phases containing
a simple point around which one can perturb. The basic
insight is that, while calculating the complete reduced
density matrix perturbatively requires perturbation terms
acting on the whole system or block, if one is only
interested in determining the ES and the leading
order eigenfunctions (entanglement eigenstates), then a
boundary-local perturbation theory is able to construct
the ES order by order in a physically transparent way.

Boundary-linked perturbation theory.—To obtain ES
levels correctly up to nth order, one only needs to consider
perturbations up to this order which act within an sites
from the boundary, @ depending on the type of perturba-
tion. This is a direct but powerful consequence of
boundary-locality, namely, that the ES levels at increasing
orders correspond to increasing distances from the bound-
ary. The perturbative calculation necessary for calculating
ES levels is thus “boundary-linked”.

For any two orthonormal bases |¢}), |¢%), of subsys-
tems A and B, the system wave function can be written as
lg) =3, Mjlet) ® |gof>. The e~ ¢i/2 of Eq. (1) are ob-
tained from a singular value decomposition (SVD) of the
matrix M. Further aspects of the perturbative calculation of
ES can be formulated in terms of the matrix M. For
example, when calculating M perturbatively, we find that
a contribution to M at some order can lead to a new ES
level only if the contribution is not appearing on the same
row or the same column as a previous contribution which
led to a new ES level at lower order. In physical terms, this
means that we do not get new ES levels by applying a
perturbation only to the A block but need to apply pertur-
bation terms to both blocks in a linked way. Some pertur-
bative calculations for the Heisenberg spin ladder, and
some general perturbative features of the matrix M, appear
in the Supplemental Material [14].

The XXZ gapped phase.—We consider the anisotropic
Heisenberg (XXZ) chain, H = H , + 5—[xy, with H , =
AY,S:8%.,, and H,, =13.(S/S;, +Hec), in the
gapped phase A > 1. The Ising limit A >> 1 is simple: the
ground state is spanned by the two product (Néel) states
INT) = [ 11T - - ) and [N2) = [ ITI1UT - - -). We will there-
fore think perturbatively around this simple limit, JH xy
being the perturbation. In the language of “domain walls”
(bond between neighboring aligned spins), the perturbation
H xy can have two effects: it can create a pair of domain

walls situated two bonds apart or it can move a domain wall
over two sites. We choose for simplicity to work with
perturbations around a single Néel state, by selecting [N1)
instead of the linear combination \/LE (IN1) + |N2)) to be the

vacuum state. For cases where the linear combination is
appropriate, the ES can readily be reconstructed from
knowledge about the individual Néel states by overlaying
and shifting by log 2 of the single-state ES.

The XXZ single-boundary ES.—Figure 1(a) shows the
ES for the simplest setup, namely, a single boundary
partitioning an open XXZ chain into two long blocks.
The total S° of the block A is a good quantum number
for the reduced density matrix p,. Hence, we organize the
ES into sectors of 855, which is the difference of the S5
value of the corresponding entanglement eigenstate from
the block S¢ value in the Néel state (0 or i%). The most
notable feature is that the ES is organized in equally spaced
hierarchical levels. In Figs. 1(a) and 1(e) the hierarchical
orders are denoted as “‘perturbation order” because suc-
cessive orders in a perturbative calculation yield succes-
sively higher ES levels.

Higher levels correspond to excitations farther from the
boundary. In Figs. 1(c) and 1(d) this is illustrated pictori-
ally by showing the dominant configurations in some of the
states occurring at several levels.

The ES can be understood physically, and constructed
accurately and completely, through the boundary-linked
perturbation theory introduced previously. Here, we
present a qualitative discussion highlighting the algebraic
structure of the problem. For the XXZ model, this theory
can be formulated as follows. The vacuum state has no
domain walls. Excitations in the ES are obtained by in-
troducing domain walls near the boundary and by moving
them into the bulk. From explicit perturbative calculations
at the first few orders, we find that the only perturbation
terms leading to new ES levels are those which do one of
the following: (1) create a pair of domain walls by applying
H xy across the boundary,

ccoollloo...~...oolllllloo..., 2)

or (2) act twice, on the first bonds on either side of the
boundary, again creating a domain wall pair

oo ~.oollTi Mo .., 3)

or (3) act twice symmetrically with respect to the boundary
so as to move a domain wall on each block, each by two
bonds away from the boundary. Above, domain wall posi-
tions are shown underlined, and o represents a spin of
unspecified orientation. The first process changes S5 by
*+1, while the others preserve S%. The boundary-locality of
the ES is encoded in the restriction that domain walls are
created only through the first two processes above and not
farther away from the boundary. The symmetrical pairwise
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FIG. 1 (color online).

Single boundary ES of the XXZ chain. (a) Long or infinite blocks. The ES levels appear at well-defined levels,

which correspond to successive perturbative orders n. The accompanying integers denote degeneracies. On the right we show the total
degeneracies at each order. The levels marked (i) and (ii) have dominant contributions shown in (b), where a filled-rectangle notation is
introduced for domain walls. (c) Dominant contributions to low-lying levels. (d) Dominant contributions to low-lying 655 = 0 levels.
(e) Finite-size block (12 spins in A); arbitrary-precision exact diagonalization data for A = 10. The effects of finite size are seen
through breaking of degeneracies at order ~8 and higher. The integer-indicated degeneracies are now approximate.

application of FH «y ensures that the new contribution is to
an element of the M matrix that is not on the same row or
column as a previous element that already led to a lower
order ES level.

Given a domain wall configuration, the corresponding
A state belongs to the sector 655 = (—I)Nﬂ%zj(—l)fx
[1 = (—=1)%], where Np is the number of domain walls in
A, j € [1, Np] labels those starting from the boundary, and
€; =1 is the position of the jth domain wall measured
from the cut. In our perturbative rules, the order at which a
particular configuration appears is givenby n = 3 ;€;. One
can thus construct the ES, organized by 655 sector, from
the perturbative rules in terms of the domain walls. In this
way, one obtains exactly the ES of Fig. 1(a).

For each 655, the lowest ES level [filled symbols in
Fig. 1(a)] is generated by a state where the region near the
boundary is packed with domain walls at each bond,
creating a ferromagnetic region as large as needed to
have that 657 value. The lowest level for sector 655 occurs
at order m(653) = [855(28S5 — 1)I.

The degeneracies of the ES follow intriguing patterns,
which can be explained through our -construction.
The degeneracy at order n in a given 0S% tower is
p((n — m(655)]/2) where p(x) is the number of integer
partitions of the integer x. The total degeneracy at a given
order n, listed to the right of Fig. 1(a), is given by g(n), the
number of partitions into unequal summands [15]. The
degeneracy sequence g(n) was observed in corner transfer
matrix calculations [16], but our perturbative construction
now gives a physical picture: the number of ES levels at
order n is the number of ways one can place domain walls

within the first n positions while keeping the sum of
position labels (3 ;€;) to be n; this number is g(n) by
definition.

For the infinite XXZ chain, this ES is actually exact for
all A > 1 (not just A > 1), with the ES level spacing 2
arccoshA, as a result of integrability [16]. In a generic
(nonintegrable) gapped phase, the hierarchical level struc-
ture is most pronounced in the case of weak perturbations
and gets progressively broadened by higher order renorm-
alizations of entanglement levels upon increasing the
perturbation.

Figure 1(e) plots the exact ES for a finite open chain. The
ES follows the infinite-system structure at low orders and
only deviates significantly (e.g., split degeneracies) at or-
ders corresponding to the distance between the boundary
and the physical edge. This illustrates again that the lowest
ES levels correspond to smallest distances from the parti-
tion boundary.

The two-boundary ES.—Boundary-locality implies that
the single-boundary ES is sufficient to construct the ES for
multiple-boundary blocks when the boundaries are suffi-
ciently far apart. Formally, this physical intuition means
that the reduced density matrix p, of a two-boundary block
should “factorize” in the loose sense that p, is isospectral
to p; ® pg, where p; (g are (virtual) reduced density ma-
trices appropriate for single-boundary blocks having the
left (right) boundary of A. This idea has recently be shown
to be at work for ES of blocks of a fractional quantum Hall
state on the torus [6].

Figure 2 shows the combination of two single-boundary
ES to form a two-boundary ES in an XXZ chain. The case
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FIG. 2 (color online). Combining two single-boundary ES to
form a two-boundary ES, for the XXZ chain. Shading indicates
the A partition. (a and b) The single-boundary ES obtained by
considering two different bipartitions. (c) Combination of single-
boundary cases to form a two-boundary ES (large empty
diamonds), compared with numerical diagonalization data at
A = 10 (small filled diamonds), which match perfectly.

shown corresponds to the ground state being a dressed
single Néel state [N1), and an even size for the A block.
The relevant single-edge ES, Figs. 2(a) and 2(b), are
then (859 )-inverted versions of each other. Each level of
Fig. 2(a) is combined with each level of Fig. 2(b), the two
constituents contributing additively to the order and to
0S%. The resulting ES has the structure and degeneracies
shown in Fig. 2(c). In the combined ES, the lowest level
at any 65 is found, from a combination of m;(x) =
|x(2x + 1)| and mg(x) = [x(2x — 1)|, to be m(6S3) =
(85%)%. This explains the parabolic envelope shown as a
dashed line in Fig. 2(c).

If the A block is odd instead of even, the two single-
boundary ES are identical rather than reflections of each
other; the combined ES would then not be symmetric under
653 inversion.

Other gapped 1D systems.—Boundary-locality can be
illustrated with the ES of various other gapped systems. As
a first additional example, we demonstrate in Fig. 3(a) the
case of the gapped spin- % Heisenberg ladder [17] with a cut
which bisects both chains (in contrast to the chain-chain
setup studied in Refs. [10,12,18]). There is once again a
hierarchical level structure corresponding to increasing
distances from the boundary. The levels have SU(2) struc-
ture; there is a triplet at first order, no new levels at second
order, two triplets at third order, a singlet and a quintuplet
at fourth order, etc. Boundary-linked perturbation argu-
ments can explain this structure and also the parabolic
envelope.
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FIG. 3 (color online). Single-boundary ES (DMRG data) for
the (a) Heisenberg spin ladder and (b) Bose—Hubbard chain. For
the ladder, we show numerical data for Jig, = 0.1y, in the
rung singlet phase. The partitioning is shown in the top cartoon
(region A shaded as in Fig. 2). The integers next to the data
points indicate approximate degeneracies. In the associated
cartoons, we show with shading the rungs (degrees of freedom)
which contribute to various levels of the ES. For the Bose—
Hubbard case (data shown for U = 40), the cartoons show
dominant contributions to ES levels. Sites with occupancy # 1
are shaded; occupancies are indicated with integers on each site.
Partition A is again as in Fig. 2. In both panels the horizontal
light dashed lines are guides to the eye indicating the perturba-
tion order at which the levels appear.

Our last example system is the Bose—Hubbard chain in
the gapped Mott insulating phase at unit filling [Fig. 3(b)].
The level structures in the ES are richer than the XXZ or
ladder cases, due to the larger local Hilbert space. Some
features, like a near-parabolic envelope, appeared in
Ref. [19]. Here, we provide the physical picture behind
this observation based on boundary-locality, as illustrated
through the cartoons in Fig. 3. The nature of the local
Hilbert spaces now allow asymmetric excitations in the
two blocks, leading to a modified parabola for the
envelope: é=x(x+ 1)InU —1In[(x+ 1)!]+ O(1/U), with
x = |ON,|.

Conclusions.—While entanglement as a boundary-
related quantity is a direct reflection of the area law and
is thus well-appreciated, the competing picture of a bulk
entanglement Hamiltonian clearly calls for a thorough
exploration of boundary-locality and its consequences.
We have provided the elements of such an analysis here.
In particular, we have shown how boundary-locality allows
a perturbative formalism specific to calculating entangle-
ment spectra. At any finite perturbative order, we repro-
duce a finite number of the lowest ES levels, which
amounts to constructing a finite-rank matrix product rep-
resentation of the state.

To put our work in the context of recent literature, high-
temperature series expansions for the mutual information
exhibit a boundary-linked property [20] similar to our rather
different 7 = O perturbation theory targeting ES. Other
recent works highlighted the structure of ES along a 1D
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block boundary in 2D systems [18,8]. Our work is
complementary in that we clarify the structure of the ES
perpendicular to the cut, i.e., as one moves further into the
bulk.

Our work opens up several research avenues. For ex-
ample, in gapless 1D states and in Fermi liquids in higher
dimensions, the entanglement entropy does not scale
purely with the boundary size but has a logarithmic cor-
rection. This implies some kind of weakening of the
boundary-local picture; degrees of freedom deep in the
bulk must play a greater role in such cases. Quantifying
this effect remains an open task.
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