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1Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany

2Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague,
Ke Karlovu 5, 12116 Prague, Czech Republic

3Department of Physics, University of California, Berkeley, California 95720, USA
4Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA—Fundamentals of Future Information Technology,

52056 Aachen, Germany
(Received 25 January 2012; published 30 May 2012)

We study the Josephson current 0-� transition of a quantum dot tuned to the Kondo regime. The physics

can be quantitatively captured by the numerically exact continuous time quantum Monte Carlo method

applied to the single-impurity Anderson model with Bardeen-Cooper-Schrieffer superconducting leads.

For a comparison to an experiment, the tunnel couplings are determined by fitting the normal-state linear

conductance. Excellent agreement for the dependence of the critical Josephson current on the level energy

is achieved. For increased tunnel couplings the Kondo scale becomes comparable to the superconducting

gap, and the regime of the strongest competition between superconductivity and Kondo correlations is

reached; we predict the gate voltage dependence of the critical current in this regime.
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Introduction.—Recently, hybrid superconductor-
quantum dot devices have attracted much attention [1]
due to their peculiar physical behavior determined by the
interplay of superconductivity of the leads and the level
characteristics of the dot. Applications in nanoelectronics
or quantum-information processing are envisaged. Among
other properties, dc Josephson transport [2–7] was inten-
sively studied. Similar to the Josephson effect of ordinary
tunnel junctions [8], a difference � � 0, � of the order
parameter phases of the two superconductors with gap �
leads to an equilibrium Josephson current J running
through the system [2–7]. The focus was on carbon nano-
tube dots [2,4–7] with well separated single-particle levels,
i.e., level broadening � and temperature T much smaller
than the level spacings, simplifying the modeling as a
single-level dot with energy � can be considered.

It is well established both theoretically [9] and experi-
mentally [3–7] that the local Coulomb interaction, i.e., the
dot charging energy U, can lead to a 0-� transition of the
quantum dot Josephson junction, associated to a first-order
(level-crossing) quantum phase transition from a singlet (0)
to a doublet (�) ground state [10]. In fact, a variation of any
of the system parameters U, �, �, � as well as the tunnel
couplings �L=R (with � ¼ �L þ �R) can be used to tune

the system across the phase boundary, if the others are
taken from appropriate ranges. At T ¼ 0, the transition
leads to a jump in J from a large and positive (0 phase) to a
small and negative value (� phase). At finite temperatures,
it is smeared out and significantly diminished, yet the sign
change of J is clearly observed in SQUID setups [3,4,7].
The experimental challenge in observing the true magni-
tude of the Josephson current to be compared with theo-
retical predictions consists in suppressing uncontrolled

phase fluctuations, which can be achieved by using
designed on-chip circuits [5,6]. In such experiments, J is
tuned by a variation of a gate voltage Vg which translates

into a rather controlled change of � [11].
The physics becomes particularly interesting if the dot is

tuned to a parameter regime in which Kondo correlations
[12] become relevant for suppressed superconductivity. It
is characterized by the appearance of the Kondo scale

(at odd dot filling) kBTK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�U=2

p
expð��U=8�Þ [12].

Kondo physics is important if kBT & kBTK � �, with kB
denoting the Boltzmann constant. In this regime perturba-
tive methods in either U, such as self-consistent Hartree-
Fock (HF) [13], or � [9] become uncontrolled. Even for
� � kBTK, at which superconductivity prevails, one ex-
pects Kondo correlations to have a significant impact on J.
These were partly incorporated using a method developed
for large � values [14]. Other techniques successfully used
for Kondo-correlated quantum dots with normal leads,
such as the noncrossing approximation (NCA) [15], nu-
merical renormalization group (NRG) [16,17], (Hirsch-
Fye) quantum Monte Carlo (QMC) calculations [18], and
functional renormalization group (fRG) [17] were ex-
tended to the present setup. With superconducting leads,
they suffer from significant conceptual or practical limita-
tions such as half filling of the dot level (NRG) and high
(NCA, QMC) or zero (fRG) temperature and, therefore,
cannot be used for a quantitative comparison to experi-
ments performed at temperatures on the order of a few tens
of mK and with a wide span of gate voltages [5,6]. The
regime of the strongest competition between superconduc-
tivity and Kondo correlations is reached for� � kBTK. For
typical experimental gap sizes of � � 0:1 meV [5–7], in
this regime kBTK � � is no longer fulfilled. Still, even for
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kBTK & �, a precursor of Kondo correlations is expected
to stabilize the singlet phase and perturbative methods
become unreliable.

Recently, the continuous time QMC method, called CT-
INT in what follows, was introduced as a new tool to study
correlated quantum dots with Bardeen-Cooper-Schrieffer
(BCS) leads [19]. Here, we exploit the exceptional flexi-
bility and accuracy of this approach and compute J as well
as the normal-state linear conductance G for the parame-
ters of the experiment of Ref. [5]. Our simultaneous analy-
sis of J and G reveals that the dot shows significant Kondo
correlations, but superconductivity prevails as � � 10TK.
In the normal state, it lies in the interesting and theoreti-
cally challenging parameter regime with kBT � kBTK �
�Bh, where �Bh (with the Bohr magneton �B) denotes
the scale associated to the applied Zeeman field h used
to destroy superconductivity. Compared to previous ap-
proaches, we are now able to quantitatively study this
experimentally relevant parameter regime with a numeri-
cally exact method and find excellent agreement between
the experimentally measured critical current Jc and the
numerically computed one for both the 0 and � phases
(see Fig. 1). We show that due to the fairly large left-right
asymmetry of the tunnel couplings and the finite tempera-
ture, the current-phase relation Jð�Þ is rather sinusoidal
even close to the 0-� transition (see Fig. 2), providing an
a posteriori justification of the extraction of Jc from the
measured current-voltage characteristics of the on-chip
circuits applying the extended resistively shunted-junction

(RSJ) model [5,6]. Finally, using the parameters of the
experiment, but increasing � such that � � kBTK we
compute the gate voltage dependence of the current in
the regime of the strongest competition between super-
conductivity and (precursors of) Kondo correlations (see
Fig. 3).
Model and method.—For the description of the single-

level quantum dot with superconducting leads we use the
Anderson impurity model with Hamiltonian H ¼ Hdot þP

s¼L;RH
lead
s þP

s¼L;RH
coup
s . The dot part reads

Hdot ¼ X
�

��d
y
�d� þU

�
dy" d" �

1

2

��
dy# d# �

1

2

�
(1)

in standard second quantized notation. In the presence of a
Zeeman field h, the single-particle energies depend on the
orientation of the spin �� ¼ �þ g�Bh�=2, with the
Landé g factor g ¼ 2 [20] and � ¼ �1. The energy is
shifted such that for h ¼ 0, � ¼ 0 corresponds to the point
of half-filling of the dot. The left (s ¼ L) and right (s ¼ R)
superconducting leads are modeled by BCS Hamiltonians

Hlead
s ¼ X

k�

�skc
y
sk�csk� ��

X
k

ðei�scysk"c
y
s�k# þ H:c:Þ; (2)

where (without loss of generality) �L ¼ ��R ¼ �=2.

The quantum dot is coupled to the leads by H
coup
s ¼P

k;�ðtskcysk�d� þ H:c:Þ. We assume energy-independent

dot-lead hybridizations �s ¼ �
P

kjtskj2�ð�F � �skÞ, with
the Fermi energy �F.
The CT-INT is based on an interaction expansion of the

partition function in which all diagrams are summed up
stochastically. The method is numerically exact and allows
the calculation of thermodynamic observables with any
required precision �MC (indicated by error bars in the
figures) with the practical limitation that the computing
time grows as 1=�2

MC. Details can be found in Ref. [19].

Here we go far beyond the proof-of-principle study
of Ref. [19] by considering � � 0, larger U=� as well
as left-right coupling asymmetries. Furthermore, we

FIG. 1 (color online). Comparison of experimental data [5]
with the numerically exact solution of the superconducting
Anderson model. (a) Best fit of the normal-state linear conduc-
tance with applied magnetic field used for extracting values of �
and �L=�R (for details see the main text). (b) Measured critical
current vs theoretically calculated Josephson current at � ¼ �

2

(CT-INT, symbols with line; self-consistent Hartree-Fock, thin
lines). The arrows indicate the level positions for which the
current phase relation is presented in Fig. 2. Inset: Normal-state
spectral function at � ¼ 0.

FIG. 2 (color online). Josephson current-phase relation for the
parameters of the experiment [5] at values of � indicated by
arrows in Fig. 1. It is rather sinusoidal even very close to the
critical value of � (1.1 and 0.8 meV), and the critical current is
thus well approximated by Jð� ¼ �

2Þ.
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compute the normal-state linear conductance in the chal-
lenging regime kBT � kBTK � �Bh.

The Josephson current is computed as the expectation

value of the left (or right) current operator J ¼
ie=@

P
k�htLkcyLk�d� � H:c:i. The noninteracting lead

degrees of freedom are integrated out, and one arrives at
a formula for the Josephson current in terms of the
imaginary-frequency Nambu-Green function Gði!nÞ of
the dot only (directly accessible in CT-INT) [19]

J ¼ 2 ImTr

�
1

�

X
i!n

�Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ!2

n

p
� i!n ��e�i�=2

�ei�=2 �i!n

 !
Gði!nÞ

�
: (3)

As our second observable, we investigate the normal-state
linear conductance G ¼ P

�G� with

G� ¼ e2

@

2�L�R

�L þ �R

Z 1

�1
A�ð!Þ

�
�dfð!Þ

d!

�
d!; (4)

where A� denotes the normal-state dot spectral function
and f the Fermi function. The computation of A� from
the (normal-state) imaginary frequency Green function
G�ði!nÞ obtained numerically by CT-INT is based on
analytical continuation. It is found that the calculation of
G� is much more reliable if the method detailed in
Ref. [21] is used. As shown there, the conductance can
be written as

G� ¼ e2

@

2�L�R

�L þ �R

2

�

X
�>0

R� Im
dG�ði ~!�Þ

d ~!�

; (5)

where the frequency derivative of the Green function has to
be evaluated at imaginary frequencies i ~!�, which can
differ from the Matsubara ones [22] given together with

the weights R� in Ref. [21]. Within CT-INT, G� is acces-
sible only at the Matsubara frequencies. Therefore,
we introduce a (real) Padé approximant GPð!Þ ¼P

M�1
j¼0 aj!

j=
P

M
j¼0 bj!

j of degree (M, Mþ 1) and mini-

mize the function

	2ðfaig; fbigÞ ¼
X
n;m

fGPð!nÞ � Im½G�ði!nÞ�gC�1
n;mfGPð!mÞ

� Im½G�ði!mÞ�g;
where C is the carefully bootstrapped estimate of the
covariance matrix of the QMC data Im½G�ði!nÞ�. The
degree of the Padé approximant (M, Mþ 1) is chosen
such that the minimal 	2 is not smaller than the number
of degrees of freedom to obtain a statistically consistent fit
and is found to be surprisingly small with M ¼ 3; . . . ; 6.
The Padé approximant may now be safely evaluated at the
positions i ~!�, and Eq. (5) can be used.
Comparison to the experiment.—In experiments, the

charging energy U can be determined accurately from
the height of the Coulomb blockade diamonds obtained
by bias spectroscopy in the normal state. The same type of
measurement in the superconducting state reveals sharp
features at the gap position from which � can be extracted
[5,6]. In addition, T and h are known within tight bounds.
The parameters which are most delicate to determine but
strongly affect J are the level width � and the asymmetry
�L=�R. Based on this insight, we proceed as follows.
(i) The parameters �, U, T, and h are taken directly from
the experiment. Those and the comparison of theoretical
curves for the normal-state conductance Gð�Þ with the
experimental ones are used for obtaining accurate esti-
mates of �, �L=�R, and the gate conversion factor � which
relates the change of � to a variation of the gate voltage Vg

according to Vg ¼ �� [24]. (ii) For the complete parameter

set determined this way, we compute the Josephson current
and compare to the measured Jc.
We focus on the most symmetric conductance double

peak presented in Fig. 4d of Ref. [5]. The experimental
parameter estimates with errors of approximately 10%
are U � 3 meV, � � 0:1 meV, T � 75 mK, and h �
150 mT. In Fig. 1(a), we show our best fit of Gð�Þ to the
experimental result from which we extract � ¼ 0:27 meV,
�L=�R ¼ 9:3, and� ¼ 0:011 V=meV. At fixedU the peak
separation and the peak to valley ratio are determined by �
whereas the overall height is given by �L=�R, as can be
inferred from Eq. (5) (in G�, only � ¼ �L þ �R enters).
Note that � turns out to be significantly smaller and �L=�R

significantly larger than the values extracted in Ref. [5]
based on the assumption that the dot is in the Coulomb
blockade regime. However, our analysis allowing for
Kondo correlations clearly reveals that those are relevant
for U=� � 11:15 and the Kondo scale kBTK � 8 �eV. It
is roughly an order of magnitude smaller than � and of the
order of the temperature (kBT ¼ 6:5 �eV) as well as the
Zeeman energy (�Bh ¼ 8:7 �eV). Therefore, neither T

FIG. 3 (color online). Josephson current at � ¼ �
2 for the

parameters of the experiment (see Fig. 1) but with increased
level broadening � ¼ 0:4 and 0.5 meV (instead of 0.27 meV) and
thus increased TK. Self-consistent Hartree-Fock is obviously
unable to describe the strong competition between superconduc-
tivity and Kondo correlations in this parameter regime and leads
to a spurious � phase for parameters for which the numerical
exact solution only shows a precursor close to half dot filling
� ¼ 0.
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nor h can be neglected when considering the normal state;
the conductance is characterized by a split Kondo plateau
(ridge) [25], not to be mistaken with the Coulomb blockade
peaks which would be located at larger energies � �
�U=2 � �1:5 meV. As an inset we show, for illustration,
the normal-state spectral function at � ¼ 0 for the ex-
tracted parameters obtained from analytic continuation of
CT-INT data onto the real frequency axis by the maximum
entropy method [26]. The appearance of a sharp zero-
energy resonance is a hallmark of Kondo correlations
[12]. The splitting of the Kondo resonance by the
Zeeman field is too small to be observable on the scale
of the plot (but present in the data).

In the experiments [5,6] Jc, defined as the maximum of
jJð�Þj over � 2 ½0; ��, is extracted from current-voltage
characteristics of the on-chip circuits using an extension of
the standard RSJ model [27]. In this analysis it is assumed
that Jð�Þ is purely sinusoidal with its maximum at � ¼ �

2 .

At first glance, this appears to be at odds with what is
known theoretically for the current-phase relation of a
Josephson quantum dot in the 0 phase (half-sinusoidal
with maximum at � ! �) and the transition region
(jump from J > 0 to J < 0 at T ¼ 0, smeared out by
T > 0) [14–18]. However, as it was shown already in
Ref. [5] for an effective noninteracting model, the sizable
left-right asymmetry and the finite temperatures of the
experimental setups imply sinusoidal currents in the 0
and � phase apart from very narrow ranges around the
0-� transitions. This conclusion is confirmed by the nu-
merically exact CT-INT in Fig. 2, where we present Jð�Þ
for the above given parameters at the level positions in-
dicated by the arrows in Fig. 1(b) showing jJð� ¼ �

2 ; �Þj.
Apparently, only for � values very close to the transition
the � position of the maximal current jJj deviates observ-
ably from �

2 , and yet the maximal value is still very close to

that of jJð� ¼ �
2Þj. This gives an a posteriori justification

of the extraction of Jc using the extended RSJ model and
allows us to focus on the current at� ¼ �

2 when comparing

to the gate voltage dependence of the critical current, as
done in Fig. 1(b). Without any additional fitting parame-
ters, we achieve excellent agreement in both the 0 (to the
left and right of the peaks) and the � phase (central region
with nearly �-independent Jc). In addition, we show
jJð� ¼ �

2 ; �Þj obtained for the same parameters using the

HF approach [13,17]. Whereas in the empty dot and doubly
occupied regime j�j * 2 meV this mean-field approxima-
tion gives decent agreement with the exact result (CT-INT;
see also Fig. 3), it apparently fails in the mixed valence
regime and for half dot filling (� � 0) in which Kondo
correlations are crucial. Important features like the
smoothing of the phase transition by the finite temperature
and the smooth crossing through zero of Jð�2Þ cannot even
be obtained qualitatively. This emphasizes that Kondo
correlations are relevant even in the presence of prevailing
superconductivity (� � 10TK) [28].

Increasing TK.—Considering � ¼ 0:4 and 0.5 meV with
all the other parameters fixed at the values given above, we
finally investigate the regime � � kBTK of the strongest
competition between superconductivity and (precursors
of) Kondo correlations. In Fig. 3, jJð� ¼ �

2 ; �Þj obtained
by CT-INT is compared to HF results. Obviously, the
singlet (0) phase is stabilized by the correlations—an effect
which HF is unable to describe. For the largest TK value (at
� ¼ 0:5), jJð� ¼ �

2 ; �Þj computed by CT-INT only shows

a precursor of the � phase (the slight suppression close to
� ¼ 0) whereas HF gives a spurious � phase. It would be
very interesting to measure the gate voltage dependence of
the critical current for dots falling into this parameter
regime, which would confirm the predictive power of our
calculations.
Summary.—We presented a thorough study of the

Josephson-current 0-� transition of a quantum dot in the
Kondo regime. A quantitative agreement to the measured
dependence of the critical current on the gate voltage for a
dot with Kondo correlations but prevailing superconduc-
tivity was achieved. This shows that our minimal model is
sufficient to quantitatively capture the relevant physics and
qualifies the CT-INT as a theoretical tool with predictive
power for transport properties of correlated quantum dots.
We further studied the regime of the strongest competition
between superconductivity and Kondo correlations, con-
firming qualitatively that the latter stabilize the singlet state
and thus the 0 phase and predicting quantitatively the
supercurrent, which can be experimentally verified.
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