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How to Find Out the Density of States in Disordered Organic Semiconductors
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We suggest a recipe on how to determine the density of states (DOS) in disordered organic semi-
conductors from the measured dependence of the charge carrier mobility on the concentration of carriers
n. The recipe is based on a theory for the concentration-dependent mobility. As an example, we apply our
theoretical results to experimental data obtained on two polymers and show that from the class of trial
DOS functions g(&) « exp{—(g/c)P}, only those with p > 1.8 can explain the experimental results. In
particular, we claim that the concentration-independent mobility at low n evidences that the DOS cannot
be purely exponential, which is in contrast to numerous recent assumptions in the literature.
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Charge transport and optical properties of organic
disordered semiconductors, such as conjugated and mo-
lecularly doped polymers, are extensively studied due to
applications of such materials in light-emitting diodes,
field-effect transistors, and xerographic and photovoltaic
devices [1-6]. The key feature of the material determining
the optoelectronic properties is its energy spectrum, also
called the density of states (DOS). Reliable first-principles
calculations of the DOS in disordered organics are not yet
known. Therefore, the only way to determine the DOS is to
compare experimental data with the appropriate theory
using some trial DOS functions g(e) aiming at the best
agreement between experimental and theoretical results.
At the first stages of research on organic semiconductors, it
has been recognized in time-of-flight studies that the DOS
in such systems is close to a Gaussian one, g(g) o
exp{—(g/0)*} [7]. However in numerous later theoretical
studies, a purely exponential form of the DOS, g(e) o
exp{—(g/0)}, has been assumed [8-12]. In this Letter,
we show how to reveal the DOS by studying the depen-
dence of the charge carrier mobility u on the concentration
of carriers n. We apply our recipe to experimental data
obtained on two widely studied polymers, PPV and P3HT
[13,14], and show that the DOS in these organic materials
is not purely exponential, but is instead close to a Gaussian
one. Using this recipe, one can analyze the DOS in other
organic materials by measuring the dependence of the
mobility on carrier concentration.

In disordered organic systems, charge transport occurs
via incoherent hopping of carriers (electrons or holes)
between strongly localized states [1-8,10,11,15]. We as-
sume that the energies of localized states are distributed via
a DOS of the form

oo =z exe -(2)']

where N is the total concentration of localized states and o
is the energy scale of the order of ~0.1 eV [1-7,13-15].
Energy € in Eq. (1) is counted positively downwards from

p>0, (1)
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some reference level € = 0. Only the range of energies
e = 0 is considered, since the temperature 7" and the
concentration of carriers n in experimental studies are
low enough so that all important physics happens in the
low energy part of the DOS. The normalization condition

[ " g(e)de = N ?)

0

demands C = oT'(p~! + 1).

The hopping transition rate for a charge carrier from an
occupied state i to an empty state j over a distance r;; is
described by the Miller-Abrahams expression

ij
2r;; g, —¢&; tlg —¢;

Vij = Vo eXP(——']) eXP(‘ it j|>, (3
a

2kT

where a is the localization length, which is assumed equal
for sites i and j, and the preexponential factor v, =
10'? s~! depends on the interaction mechanism that causes
transitions [1-6,16]. In the case of thermal equilibrium,
which we consider, the energy distribution of carriers is
described by the Fermi function f(e, ep) = {1 +
exp[(er — €)/kT]}~! with the Fermi level & determined
by the condition

ﬁ) * fle ep)g(e)de = n, @)

where n is the concentration of charge carriers. Equations
(1)—(4) formulate a self-consistent theoretical model with
three dimensionless parameters: o/kT, Na®, and n/N.
Note that experiments are usually carried out at room
temperature, so that k7 < o.

It is well known that in inorganic disordered semicon-
ductors like a-Si:H or chalcogenides with purely exponen-
tial DOS given by Eq. (1) with p = 1 and C = o, charge
carriers dive in energy unlimitedly in course of time in an
empty system at k7 < o [3,17]. The speed of spatial
charge carrier motion slows down and the transport coef-
ficients appear time dependent. This regime is called dis-
persive transport. During dispersive transport, the carrier
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mobility u always depends on the concentration of
carriers n, since the diving in energy stops only when the
energy position of carriers arrives at the vicinity of the
n-dependent Fermi level er(n) and hence cannot dive
further on [18,19].

Remarkably, it has been established experimentally
for the most widely studied organic disordered materials,
OCC-PPV and P3HT, that the carrier mobility being
strongly n-dependent at large n, as typical also for inor-
ganic materials, becomes independent on n at low concen-
trations [13,14]. This observation by itself excludes the
possibility of the purely exponential DOS given by Eq. (1)
with p = 1, since for p = 1 the equilibrium mobility is
always determined by the position of the concentration-
dependent Fermi level & z(n) [3]. Therefore, it is not correct
to approximate the Gaussian DOS by an exponential one,
particularly in the regime of low carrier concentrations 7.
In the Gaussian DOS, the carrier mobility does not depend
on n at low concentrations (see below), while in the
exponential DOS the mobility is always dependent on .

The reason for the n-independent mobility at low n is
the following [20,21]: for DOS functions given by Eq. (1)
with p > 1 even at negligibly low carrier concentrations,
charge carriers do not dive in energy unlimitedly in
course of time, but instead spend most time in the vicinity
of the so-called equilibrium energy &,, determined as
[7,20,21]

. _ I3 2s(e)exp(e/kT)de
® [ g(e)exp(e/kT)ds

Of course, the time 7(g) o exp(e/kT) that carriers spend at
energy & increases exponentially with g, but the probabil-
ity to find states with large & (note, we count energies
downward as positive) decreases with increasing & propor-
tional to the DOS g(e), i.e., at p > 1 steeper than the
increase of 7(g). It is the interplay between these two
e-dependencies in 7(¢) and g(&) that provides a finite value
of the equilibrium energy &,,. This feature gives the carrier
mobility a definite value even in the empty system when
the Fermi level is below &, [20-23], i.e., gp(n) > &q.
Mobility becomes n-dependent only at such high concen-
trations that e z(n) < &, [3,20,21,24,25]. The critical con-
centration 7., above which mobility becomes dependent on
the carrier concentration n, is thus determined by the
condition [3,20,21,24]

&)

er(n.) = €. (6)

Both quantities, £5(n) and &, are sensitive to the value of
p in Eq. (1). Therefore, Eq. (6) can be used to determine
the DOS by comparing the theoretical result for n, given
by Eq. (6) with experimental data. The only two model
parameters involved in this criterion are o/kT and n/N.
Energy relaxation of carriers in the DOS described by
Eq. (1) with p = 1 resembles the multiple-trapping mode
with the mobility edge replaced by some particular energy

level g, called the transport energy (TE) [26]. For parame-
ters o/kT and Na® typical for disordered organics, the
position of the TE is close to the reference energy € = 0
for p =1 [26] and for p = 2 [19,27], suggesting that it is
true for all values 1 = p = 2. In fact, not only for p = 1
the dispersive transport can take place as described above.
At values p > 1 this regime with a time-dependent mobil-
ity is to be observed though within the time scale ¢ < f,,
where the relaxation time ¢, is the time necessary for
carriers to be thermally activated from the energy &, to
the TE [22], i.e., ;g = v, ' exp(eq/kT) exp(2N~'/3 /a).

Let us first try to estimate the shape of the DOS, namely,
the value of p in Eq. (1), by estimating the magnitude of
te1» Which should be smaller than the time scale of experi-
ments observing a time-independent mobility. In Fig. 1 we
show the product g(&) exp(e/kT) for various values of the
DOS exponent p in Eq. (1). As discussed in Refs. [22,23],
this product determines the average time spent by carriers
at different energies during the conducting process. The
maximum of each curve corresponds to the value of &, that
determines the equilibrium carrier mobility at low carrier
concentrations [3,20,22]. One can recognize in the figure
that for values p < 1.5, the time necessary for the carrier
activation from &, to the maximum of the DOS, where the
transport takes place [19,26] 7(g) = v ! exp(eo/kT) X
exp(2N~'/3/a) would be larger than v, ' exp(110). This
time is too large for any realistic experimental situation at
any reasonable choice of v(. Only this argument excludes
p values in the DOS [Eq. (1)] smaller than 1.5.

Let us now estimate the shape of the DOS applying
criterion [Eq. (6)] to the experimental data obtained for
organic disordered materials in Refs. [13,14]. Calculating
ep(n) via Eq. (4) and &, via Eq. (5), we obtain from
Eq. (6) the values of n./N plotted in Fig. 2 for different
choices of the DOS energy scale o in Eq. (1). Also, the
experimental data for OCC-PPV and P3HT from
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FIG. 1. The product g(e)exp(e/kT) as a function of energy

for different DOS exponents p in Eq. (1) for o/kT = 4. Energy
is counted positively downwards from the reference point at the
DOS maximum.
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FIG. 2. The criterion of Eq. (6) is used to calculate the critical
concentration n,. above which the Fermi level & crosses e,. n,
is plotted as a function of the DOS exponent p for different
values of the energy scale o of the DOS. The experimental
results of Refs. [13,14] are shown as horizontal lines.

Refs. [13,14] are shown in the figure, for which we used
N =3 X 10 cm™3 [13]. It is apparent from Fig. 2 that
only p values in the range 1.7 < p < 2.2 could describe
the experimental data. As clearly seen, this conclusion is
robust against increasing or decreasing the value of N by
orders of magnitude and also against changing the energy
scale of the DOS in a wide range. Therefore, one can
conclude that the DOS in OCC-PPV and P3HT studied in
Refs. [13,14] is close to a Gaussian one and is definitely not
purely exponential.

So far we relied on the criterion in Eq. (6). Let us
now calculate the charge carrier mobility x and compare
its n-dependence with the experimental data from
Refs. [13,14]. We emphasize once again that for all DOS
shapes given by Eq. (1) with p = 1 there is a particular
energy level g, called the transport energy that has the
following property: from energy levels below &, carriers
perform hops to states in the vicinity of €,, while from the
latter ones the carriers fall into energetically deeper spa-
tially nearest states [22,26]. This hopping process near and
below g, resembles a multiple-trapping-like process where
g, plays the role of a mobility edge. Calculating the carrier
mobility, one also has to take into account the percolation
nature of hopping conduction, namely, that in order to
provide an infinite percolation cluster of connected sites,
one needs to take into account in average at least B = 2.7
sites with highest rates available for any hopping event
[23]. Literally extending the theory from Refs. [22,23]
developed there for dilute systems to the case of finite
concentration n, and using the theory from Ref. [19] for
the transport energy &,, we obtain the following set of
equations for the concentration-dependent mobility w(7)
in disordered semiconductors:

= kiTRZ(e,xtr‘, 9

X[1 = fle, ep)]gle,) = 1. (10)

From Eqgs. (7)—(9), one straightforwardly obtains the equa-
tion for the carrier mobility

e 3B 2 EF — St)
=yy—— ——R(g,) — , (11
= Yok 47R(g,)n, exp( a (2) kT (in
with n, determined as
m = [ fte.epg(erds. (12)

Since the upward hops from the Fermi level ¢ to the TE ¢,
dominate the charge transport, the carrier concentration
below the TE, n,, enters the set of equations. However, as
mentioned above, for parameters o/kT and Na> typical for
disordered organics the position of the TE is close to the
reference energy € = 0 [19,27]. Hence, one can replace n,
by n in Eq. (11).

Using Egs. (1), (2), (8), and (10)—(12), we calculate the
mobility and obtain the data plotted in Fig. 3 for different
values of the exponent p in Eq. (1). The critical concen-
trations observed experimentally in Refs. [13,14] are in-
dicated in the figure as two vertical arrows. The parameters
o/kT and Na?® are chosen according to Refs. [13,14]:
o=0.1124/2eV, T=293 K, N =3 % 10® cm~3, and
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FIG. 3. Calculated mobility as a function of the relative charge
carrier concentration n/N for different DOS exponents p in
Eq. (1). The experimental results from Refs. [13,14] are indi-
cated as vertical arrows.
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a = 0.16 nm. The result evidences again that DOS expo-
nents of p < 1.8 in Eq. (1) cannot match the experimental
data, since in the experiments mobility becomes indepen-
dent of n at much higher values n. [13,14] than a DOS with
p < 1.8 would allow.

The dependence of the carrier mobility x on the con-
centration n, although often highlighted, is in fact not
surprising at all. Indeed the contribution of any pair of
sites i and j to the hopping conductivity is proportional to
the factor [3,16]

g, —¢&i|ltle;, —€epl+le;—¢
Vijmexp(_| i |MF| le; F|). 03

It has the form of Eq. (3) only in the case if the starting site
is occupied by the carrier and the target site is empty. Since
the contribution of any pair of sites i and j depends on the
carrier concentration n via the dependence of the Fermi
energy on n in Eq. (13), it is not at all surprising that the
mobility determined by hopping via localized states de-
pends on n. However, what is remarkable is the indepen-
dence of the mobility on n at concentrations below some
critical value n,, as it has been shown experimentally, for
instance, in Refs. [13,14]. One can easily obtain this inde-
pendence of w on n for small concentrations n using the
above general set of equations. In the low-concentration
regime, the Boltzmann approximation for the Fermi distri-
bution can be applied yielding

f(s, St) — [1 + e(sF—e)/kT]—l ~ e_sF/kTes/kT' (14)

In such a case, in accord with Eq. (12), n, « exp(—eg/kT).
Inserting this result for n, into Eq. (11) cancels the
concentration-dependent Fermi energy in this equation.
Since the TE ¢, is independent of n at low concentrations
[19], the expression for the mobility, Eq. (11), loses its
n-dependence completely in the nondegenerate case, for
which the Boltzmann approximation is valid. Note that this
approximation is never valid for the purely exponential
DOS of Eq. (1) with p = 1, while it is valid for a DOS
with p > 1 in the case € > &, (note, we count energies
downward as positive).

Our theoretical approach relies on the assumption
that the DOS (i.e., the portion participating in transport)
can be sufficiently well described by one set of trial func-
tions. This might be well justified as long as there is no
unfortunate superposition of inhomogeneously broadened,
electronically inequivalent molecular states that may give
rise to several “humps” in the DOS. Particularly, such a
DOS structure with several peaks in the upper energy part of
the DOS has been reported for several organic semiconduc-
tors on the basis of experimental studies using the Kelvin
probe force microscopy and the gate-modulated activation
energy spectroscopy [28—34]. Remarkably, in all these stud-
ies an exponential low-energy tail in the DOS has been
reported. It would be very interesting to check this result
by our method, namely by measuring the concentration

dependence of the carrier mobility at low carrier concen-
trations, at which the low-energy tail dominates the charge
transport. If a concentration-independent mobility is ob-
served even at very low concentrations, one should check
the validity of the experimental methods or revise the so far
generally accepted transport model used in our Letter.

We conclude that by analyzing only the critical charge
carrier concentration n, below which the mobility becomes
independent of the carrier concentration, one can deter-
mine the shape of the DOS in the systems, for which the
DOS can be described by one set of trial functions.
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