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A combination of fundamental measure density functional theory and Monte Carlo computer simula-

tion is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-

sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with

simulations and predicts a tension of 0:66kBT=�
2 with a small anisotropy of about 0:025kBT and

stiffnesses with, e.g., 0:53kBT=�
2 for the (001) orientation and 1:03kBT=�

2 for the (111) orientation.

Here kBT is denoting the thermal energy and � the hard-sphere diameter. We compare our results with

existing experimental findings.
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Solidification and melting processes involve crystal-
fluid interfaces that separate the disordered from the
ordered phase. Understanding the properties of such inter-
faces on a microscopic scale is pivotal to control and
optimize crystal nucleation and the emerging microstruc-
ture of the material. Important applications include the
fabrication of defect-free metallic alloys [1] and of pho-
tonic [2], phononic [3], and protein [4] crystals. In equi-
librium, i.e., between a coexisting crystal and fluid phase,
creating a crystal-fluid interface results in a free energy
penalty per area that is called interfacial tension. Unlike the
liquid-gas or fluid-fluid interface, the structure of the solid-
fluid interface depends on its orientation [5]. This anisot-
ropy is associated with a difference between the interfacial
tension and the interfacial stiffness of a crystalline surface.

Predicting crystal-fluid interfacial tensions by a molecu-
lar theory is a very challenging task. Classical density
functional theory of freezing provides a unifying frame-
work to describe the solid and liquid on the same footing
and is therefore in principle a promising tool. In this
respect, the simple athermal hard-sphere system which
exhibits a freezing transition from a fluid into a face-
centered-cubic (fcc) crystal, is an important reference
system. The accuracy of previous density functional cal-
culations of the hard-sphere solid-fluid interface [6–9],
however, was hampered by the lack of knowledge of a
reliable functional and severe restrictions in the parametri-
zation of the trial density profile.

In this Letter, interfacial tensions and stiffnesses of the
equilibrium hard-sphere crystal-fluid interface are pre-
dicted using fundamental measure density functional the-
ory [10] which has been shown to predict accurate bulk
freezing data [11]. The interfacial tension and stiffness for
five different orientations are obtained, namely, along the
(001), (011), (111), (012), and (112) orientations (see
Fig. 1). A small orientational anisotropy for the tensions

is found and the average tension is about 0:66kBT=�
2 with

kBT denoting the thermal energy and � the hard-sphere
diameter. For the stiffnesses the data are spread in a much
wider range between 0:28kBT=�

2 for the (011) orientation
with lateral direction ½�100� and 1:03kBT=�

2 for the (111)
orientation. We have also conducted Monte Carlo simula-
tions to extract the stiffness from capillary-wave fluctua-
tions for the above orientations except (012), thereby
improving the accuracy of earlier data [12–18]. We find
quantitative agreement between density functional theory
and computer simulation.
In equilibrium, the athermal hard-sphere model system

is solely characterized by the volume fraction �; the
thermal energy kBT just sets the energy scale. The fluid-
solid (fcc) freezing transition is first-order with coexisting
fluid and solid volume fractions of �f ¼ 0:492 and �s ¼
0:545, respectively, and a coexistence pressure of pc ¼
11:576kBT=�

3 [19]. For a given volume V containing
coexisting bulk fluid and solid, and a planar fluid-solid
interface of area A, the excess grand free energy per area

FIG. 1 (color online). In the left panel, the surface orientations,
as listed in Table I, are indicated on an octant of the unit sphere.
The right panel shows a Wulff plot of the corresponding inter-
facial tension �ðn̂Þ; here, the colors display the value of the
tension for a given orientation.

PRL 108, 226101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

0031-9007=12=108(22)=226101(5) 226101-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.226101


is the surface or interface tension, given by � ¼
ð�þ pVÞ=A, with � denoting the grand-canonical free
energy. For crystal-fluid interfaces, � depends on the ori-
entation of the interface, characterized by a normal unit
vector n̂ relative to the crystal lattice. The latter is fixed
with the fcc cubic unit cell edges parallel to the Cartesian
coordinate axes of our system, see Fig. 1.

The central quantity to describe thermal fluctuations,
i.e., capillary waves, along the anisotropic crystal-fluid
interface is the interfacial stiffness defined tensorially
[20] as

����ðn̂Þ ¼ �ðn̂Þ þ @2�ðn̂Þ
@n̂�@n̂�

(1)

for two directions n̂� and n̂� that are orthogonal to n̂.

We calculate the tension of the hard-sphere crystal-fluid
interface using classical density functional theory (DFT)
that provides direct access to the grand-canonical free
energy � [21]. We employ the geometric fundamental
measure approach first established by Rosenfeld [22,23]
and most accurately refined in the so-called White Bear
version mark II [10]. A free minimization of this theory
in the bulk phases [11] gives accurate hard-sphere bulk
coexistence data which are needed as a reliable input
for the calculation of interfacial tensions. The crystal-
fluid phase transition occurs at a coexistence chemical
potential �c=kBT ¼ 16:3787 and a coexistence pressure
pc�

3=kBT ¼ 11:8676. The coexistence packing fractions
of the fluid and solid are, respectively, �f ¼ 0:495 and

�s ¼ 0:544, in close agreement with the aforementioned
computer simulation data [19].

At the prescribed coexistence chemical potential�c, the
grand free energy functional is numerically minimized
inside a rectangular cuboid box of lengths Lx, Ly, and Lz

with periodic boundary conditions in all three directions
[7]. The surface normal is pointing along the z direction
and the box length Lz is chosen large enough (about
50–60�) to ensure a large part of bulk crystal and fluid
phase at coexistence which are separated by two interfaces.
The lateral dimensions Lx and Ly of the box depend on the

surface orientation relative to the fcc crystal. They are
determined by the minimal size of a periodic rectangular
cross section which accommodates the prescribed relative
orientation. The density field is resolved on a fine rectan-
gular grid in real space with a spacing of about 0:02�.
Starting from an initial profile which contains the two bulk
parts of preminimized crystal and fluid, the density func-
tional is minimized using a Picard iteration scheme com-
bined with a direct inversion in the iterative subspace
method [24,25] and a simulated annealing technique [7].
Finite size effects due to the finite grid size were excluded
by also using smaller grid spacings to ensure free minimi-
zation of the density functional in practice.

Results for the minimized density profiles are displayed
in Fig. 2 for five different orientations. Both the laterally

integrated (z-resolved) density field ��ðzÞ ¼ 1
LxLy

�
RLx

0

RLy

0 �ðx; y; zÞdydx and contour plots, �ðx ¼ 0; y; zÞ,
are shown.
The DFT results for the interfacial tension are summa-

rized in Table I for five different orientations. With a slight
orientational dependence, all the values vary around
0:66kBT=�

2. The errors given in Table I are estimated
from several independent minimization runs. Since the
anisotropy is weak, the orientational resolved interfacial
tension can be well-fitted by the cubic harmonic expansion
[26,27]

�ðn̂Þ
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�
Q� 3

5

�
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�
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�
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�
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Qþ 33
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�
(2)

with n̂ ¼ ðn1; n2; n3Þ, Q ¼ n41 þ n42 þ n43, S ¼ n21n
2
2n

2
3 and

four fit parameters �0, �1, �2, �3. The expansion (2) can be
used to obtain the interfacial stiffness (1) from the DFT
data of the anisotropic interfacial tension [19,27]. The

FIG. 2 (color online). DFT results: (a) Laterally integrated
density profiles ��ðzÞ for the five surface orientations, as indi-
cated, (b) contour plots at x ¼ 0. The periodic length of the total
profiles in z direction is 50:15� (001), 53:19� (011), 65:15�
(111), 56:07� (012), and 61:42� (112).
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resulting anisotropy of the stiffness is considerably larger
than the one of the tension [thus, the resulting errors of
����ðn̂Þ are also larger]. For the five different orientations

considered in this work, the resulting data for the interfa-
cial stiffness and for the fit parameters are listed in Table I.

In the Monte Carlo (MC) simulations, similar to the
procedure in [12,19], inhomogeneous hard-sphere systems
at the coexistence pressure pc are prepared followed by
production runs in the canonical ensemble. The canonical
MC simulation consists of particle displacement moves
according to a standard Metropolis criterion where the trial
displacements of the particles are randomly chosen from
the interval [� 0:11�, þ0:11�]. The inhomogeneous
solid-fluid systems are placed in rectangular cuboid simu-
lation boxes of nominal size L� L� 5L (L � 25�), con-
taining about 105 particles. We apply periodic boundary
conditions in all three dimensions, the fcc crystal with
z extension of about 2L resides in the middle of the box
and is separated from the fluid by two planar interfaces.
Since the system is in equilibrium, the amount of crystal
and fluid phase as well as the interfaces remain stable
during the simulation. We consider the crystal orientations
(001), (011), (111), and (112), see Fig. 1. At each orienta-
tion, 10 independent runs are performed and in each of

these runs, 10 000 independent configurations are gener-
ated that are used for the analysis of the interfaces.
The stiffnesses �� are extracted from the capillary-wave

spectrum hh2ð ~qÞi [27], i.e., the correlation function of the
interface height fluctuation hð ~qÞ (with ~q ¼ ðqx; qyÞ the

two-dimensional wave vector along the lateral extension
of the interface). In order to determine hð ~qÞ a criterion has
to be introduced according to which one can distinguish
between fluid and crystal particles. Following work
[12,19], the rotational-invariant bond-order parameter
q6q6ðiÞ was used [28,29]. To distinguish between crystal-
line and fluid particles, we adopt the same criterion as in
Refs. [12,19], where a particle i was identified as one with
crystalline order if q6q6ðiÞ> 0:68, otherwise it was defined
as a liquidlike particle. Moreover, the local position of the
interface is defined by the set of crystalline particles at the
interface (particles which have less than 11 crystalline
neighbors). Some particles in the liquid bulk identified as
crystalline were removed by searching the largest cluster
among the particles identified as interface particles. The
fluctuation of the local interface position is defined as
hðxi; yiÞ ¼ zi � hzi, with i the index of a particle on the
surface and hzi the instantaneous average location of the
interface. The irregularly distributed particle coordinates
(xi, yi) are then mapped onto a regular grid in the xy plane
with grid spacing �x ¼ �y ¼ � using Shepard interpola-
tion [27]. Finally, the height fluctuation hð ~qÞ is obtained
from a Fourier transformation of the interpolated heights.
Figure 3 shows the q-dependent interfacial stiffness,

as defined by the equation ��1ðqxÞq2x þ ��2ðqyÞq2y ¼
kBT=½LxLyhh2ð ~qÞi�: for the (001) and (111) orientation

��ðqÞ ¼ ��1ðqxÞ ¼ ��2ðqyÞ holds whereas for the (011) and

(112) orientation there are two different coefficients ��1ðqxÞ
and ��2ðqyÞ that can be determined from the latter equation

by considering qy ¼ 0 or qx ¼ 0, respectively. The solid

lines in Fig. 3 are fits of the data for q < 1:5��1 with the

TABLE I. Interfacial tensions � and stiffnesses �� in units of
kBT=�

2 for different surface normal vectors (round brackets)
and tangential directions (square brackets). In DFT the tensions
are measured directly, in the simulation the stiffnesses. The other
data are listed italicized and are calculated using the fit function
(2). The fit parameters are obtained from a least-square fit to the
measured data. For DFT they are �0 ¼ 0:664ð2ÞkBT=�2, �1 ¼
0:1076ð120Þ, �2 ¼ �0:01364ð292Þ, �3 ¼ �0:0023ð209Þ and for
simulation �0 ¼ 0:618ð11ÞkBT=�2, �1 ¼ 0:0905ð32Þ, �2 ¼
�0:00547ð44Þ, �3 ¼ 0:0054ð25Þ. As a reference previous simu-
lation results for tensions [17] and stiffnesses [15] are shown in
the last column. The numbers in parentheses indicate the uncer-
tainty in the last digit(s).

Orientation Theory Simulation References [15,17]

� (001) 0.687(1) 0.639(11) 0.5820(19)

�� (001) 0.53(14) 0.419(5) 0.44(3)

� (011) 0.665(1) 0.616(11) 0.5590(20)

�� ð011Þ½�100� 0.283(35) 0.401(5) 0.42(3)

�� ð011Þ½01�1� 0.86(14) 0.769(5) 0.70(3)

� (111) 0.636(1) 0.600(11) 0.5416(31)

�� (111) 1.025(79) 0.810(5) 0.67(4)a

� (012) 0.674(5) 0.623(11) 0.5669(20)

�� ð012Þ½�100� 0.454(57) 0.575(5) 0.59(3)

�� ð012Þ½02�1� 0.71(12) 0.420(5) 0.43(3)

� (112) 0.654(1) 0.611(11)

�� ð112Þ½�110� 0.973(41) 0.606(5)

�� ð112Þ½11�1� 0.704(50) 0.550(5)

aThis value is for the rhcp-crystal-liquid, rather than the
fcc-crystal-liquid interface. See [15] for details.
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FIG. 3 (color online). q-dependent interfacial stiffness ��ðqÞ for
the (001) and (111) orientation (a) as well as the (011) and (112)
orientation for the indicated directions (b). Note that for (112)
only the ½�110� direction is shown because ��ðqÞ for the ½11�1�
direction is very similar to that of the latter direction.
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function ��ðqÞ ¼ ��þ aq2 þ bq4 yielding the values for the
stiffness �� for q ! 0.

In Table I, the values of ��, as obtained from our simu-
lation, are given in comparison to previous simulation
results and to DFT. A direct comparison is not possible
since in DFT the tensions are calculated whereas in MC
calculations the stiffnesses are measured. A comparison is
only possible using a tension-stiffness conversion through
a least-square fit to the tension anisotropy expansion (2)
and the corresponding expression for the stiffnesses
[through a combination of (2) and (1)], giving the average
tension �0 and the parameters �i (i ¼ 1, 2, 3). [Because the
fit function (2) cannot reproduce the inner anisotropy for
the (012) orientation (shown in the theory column of
Table I) we have not taken into account the simulation
data for the stiffnesses at the orientations (012) and (112)
for the least-square fit. The different inner anisotropy
therefore is not a shortcoming of DFT.] Here, an element
of uncertainty is added by the truncation of the expansion
since the single terms especially in the stiffness expansion
are not small (note also the associated error bars in con-
verted quantities).

As expected for a fcc-fluid interface, DFT shows the
largest interfacial tension for the (001) interface orientation
and the lowest one for the (111) orientation, giving the
tension anisotropy ð�ð001Þ � �ð111ÞÞ=2 ¼ 0:025kBT=�

2.
The average tension �0 ¼ 0:664kBT=�

2 is 7.4% higher
than that from the simulation. This deviation most likely
stems from the fact that in DFT (long-ranged) fluctuations
in the interface are averaged out. A comparison between
the stiffnesses shows deviations from up to 0.36 for the
ð112Þ½�110� direction to less than 1% for the ð012Þ½02�1�
direction.

Previous simulations obtained the values
0:559ð17ÞkBT=�2 [15] and 0:5610ð12ÞkBT=�2 [17] for
�0. These values are 10% smaller than our simulation
results. An obvious discrepancy appears for the (111)
interface orientation where we have not observed devia-
tions from a fcc packing in contrast to [15]. Further differ-
ences to previous simulations are the use of a different
geometry and of a rotational-invariant order parameter for
the identification of crystalline particles.

We now compare our data to real-space experiments on
dispersions of hard-sphere-like colloids. They often carry
residual charges and are polydisperse. This renders a com-
parison with theoretical results on hard spheres difficult.
Hitherto the interfacial tension was indirectly measured by
interpreting the probability to find small (nonspherical)
clusters in terms of classical nucleation theory [30] yield-
ing data for a mean tension of about �0 ¼ 0:1kBT=�

2.
Clearly, given the limitations of the hard-sphere model
due to particle charging and the inherent assumption of
small spherical crystalline nuclei, this is just a rough
estimate of �0. An alternative experimental route is via
the analysis of the capillary-wave spectrum similar to what

we do in our MC simulations [31–33] providing direct
access to the interfacial stiffnesses. In Ref. [32], the re-
ported stiffness of 1:2kBT=�

2 for an interface between a
randomly stacked hexagonal close packed (hcp) crystal
and its melt is significantly higher compared to our
results which might reflect the slight charge, the limited
ensemble averaging, and an ad hoc value for the viscosity
required for the analysis in this experiment. In Ref. [31],
the reported stiffnesses were in the range of about
ð0:7–1:3ÞkBT=�2. Interestingly, the stiffness for the (011)
interface was found to be isotropic and the highest value
for the stiffness was found for the (001) orientation, oppo-
sitely to what the authors expected and what we found for
hard spheres. This might be due to a limited number of
crystalline layers and the small gravitational length of �=7
which limits the thickness of the liquid. Finally, Nguyen
et al. [33] grew crystals of PNIPAM particles in a tempera-
ture gradient and analyzed the capillary waves along
crystal-fluid interfaces after the removal of the temperature
gradient. They measured averaged stiffnesses for several
interface orientations in the range of ð0:19–1:13ÞkBT=�2

that show the best agreement with our results.
Nevertheless, the latter experiment is also not accurate
enough to validate theory and simulation on a quantitative
level and thus more experimental explorations are
required.
In conclusion, we have predicted accurate values for

the anisotropic crystal-fluid surface tensions and stiff-
nesses of a hard-sphere system by using both fundamental
measure density functional theory and Monte Carlo simu-
lations. A small anisotropy in the tensions of about 10%
was found which is, however, crucial for the transforma-
tion to stiffnesses which differ up to a factor of 4. These
predictions can help to clarify apparent discrepancies
found in real-space experiments of sterically stabilized
colloidal suspensions [30–33]. Since the anisotropic ten-
sions control changes of the interfacial shape, their pre-
cise quantitative determination help to understand crystal
nucleation [34,35] and the transport of larger carriers
through the interface. They may also serve as further
input to phase-field-crystal calculations which explore
solidification processes on larger length and time scales
[36–38].
Future work should address soft interactions and attrac-

tions (as relevant, e.g., for colloid-polymer mixtures), in
order to scan the full range from a fluid-crystal to a vapor-
crystal interface. Further extensions can be done along
similar ideas as used and proposed here for binary
mixtures. Finally the recent extension of DFT towards
dynamics for Brownian systems can be used to explore
the time-dependent growth kinetics and relaxation towards
equilibrium for the hard-sphere interface [39].
We thank K. Sandomirski and B. B. Laird for helpful

discussions. This work was supported by the DFG via SPP
1296 and SFB TR6.
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