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We reconsider the applicability of classical nucleation theory (CNT) to the calculation of the free

energy of solid cluster formation in a liquid and its use to the evaluation of interface free energies from

nucleation barriers. Using two different freezing transitions (hard spheres and NaCl) as test cases, we first

observe that the interface-free-energy estimates based on CNT are generally in error. As successive

refinements of nucleation-barrier theory, we consider corrections due to a nonsharp solid-liquid interface

and to a nonspherical cluster shape. Extensive calculations for the Ising model show that corrections due

to a nonsharp and thermally fluctuating interface account for the barrier shape with excellent accuracy.

The experimental solid nucleation rates that are measured in colloids are better accounted for by these

non-CNT terms, whose effect appears to be crucial in the interpretation of data and in the extraction of the

interface tension from them.
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The decay of metastable states, such as the solidification
of a supercooled liquid, takes place through the nucleation
and growth of some small-sized droplet within the system
[1]. The initial stage of the phase transformation is usually
described within the time-honored classical nucleation
theory (CNT) [2–4], where the droplet is envisaged as a
sphere of, say, bulk solid, separated from the liquid by a
sharp interface, giving rise to a free-energy penalty pro-
portional to the interface area and a total Gibbs-free-energy
activation barrier

�GðnÞ ¼ �j��jnþ An2=3; (1)

where n is the number of particles in the solid cluster,
��< 0 is the chemical potential difference between solid

and liquid, A ¼ ð36�Þ1=3��2=3
s � with �s the bulk-solid

number density and � the specific surface free energy
(surface tension) of the planar interface, all anisotropies
being neglected at this stage. The droplet grows if it
exceeds a critical size n� corresponding to the maximum
�GðnÞ ( � �G�). CNT is routinely used to estimate the

nucleation rate I ¼ I0e
���G�

, where � ¼ 1=ðkBTÞ is the
inverse temperature and I0 a kinetic prefactor that varies
slowly with T. Clearly, this connection between I and� [4]
relies on several severe approximations. First of all the
choice of an appropriate reaction coordinate, here the
droplet size n, an issue largely discussed and criticized in
the literature [5–8]. Moreover, I0 is notoriously influenced
by genuinely nonequilibrium effects and various expres-
sions resulting from a more detailed consideration of the
nucleation kinetics are known since a long time [9–11].

In this Letter, we do not address the issue of the validity
of CNT for predicting the nucleation rate but rather con-
sider an even more fundamental question, namely, the
efficacy of CNT in describing the dependence of the

interface free energy of the solid cluster on its size. Our
starting point is to show that the profiles of�GðnÞ obtained
by numerical simulation of nucleation clusters in a variety
of systems are not consistent with Eq. (1). We then explore
corrections, some already present in the literature, some
novel. It emerges that the numerical profiles can be
accurately reproduced by assuming a diffuse and ther-
mally fluctuating solid-liquid interface. Finally, we show
how this finding is of direct use to interpret nucleation
rates and correctly extract interface free energies from
them, a result that should be of considerable interest to
experimentalists.
We begin by displaying in Fig. 1 existing accurate

simulation data for �GðnÞ of a solid cluster nucleating
inside a bulk liquid, available for hard spheres [12] and
for the Fumi-Tosi model of NaCl [13]. In each case, we
superpose a CNT least-squares fit to Eq. (1) for compari-
son. It is clear that CNT is not generally adequate to
describe �GðnÞ. The deviations are systematic and of
different sign at low and large n. The fit quality does not
improve by restricting data to large clusters only, indicat-
ing that even in the barrier region the cluster free energy
does not obey Eq. (1). To shed light on this failure of CNT,
we relax the approximations leading to Eq. (1) one at a
time. Eventually, we shall get a more general expression
for the free-energy cost of a n-particle cluster for large n,
which turns out to have the Dillmann-Meier [14] form

�G ¼ 4�R2 ~�

�
1� 2 ~�

R
þ ~�

R2

�
� 4

3
�R3�sj��j þ C ln

R

a
;

(2)

with R ¼ ½3n=ð4��sÞ�1=3 and a a microscopic length,

and where ~�, ~�, ~�, and C are theory-dependent parameters.
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The assumption in (2) is that of a spherical cluster shape—
a different shape, that would be determined by free-energy
anisotropy, would slightly change the value of ~� but not the
physical discussion that follows. The first modification to
CNT we consider is dropping the sharp-interface approxi-
mation [15]. Within Landau theory, the free-energy cost
of the critical droplet is the unstable stationary point of
a functional, e.g.,

G ½�� ¼
Z

d3x

�
c

2
ðr�Þ2 þ 	

2
ðr2�Þ2 þ gð�ðxÞÞ

�
: (3)

Here c, 	 > 0, �ðxÞ is the ‘‘crystallinity’’ order parameter
(OP) that distinguishes the solid (�> 0) from the liquid
(� ¼ 0), and gð�Þ is the Landau free energy per unit
volume of the homogeneous system. Below melting, T <
Tm, g shows, besides the liquid minimum gð0Þ ¼ 0, a
second and deeper solid minimum. Right at Tm, we assume
gð�Þ ¼ c20�

2ð1��=�s0Þ2ð1þ 
�=�s0Þ with c20 > 0
and 
 >�1 [16], where �s0 is the value of � in the bulk

solid at coexistence, and where a nonzero value of 
 creates
an asymmetry between the liquid and the solid minimum.
We also assume that, slightly below Tm and at fixed pres-
sure, g acquires a linear dependence on �T ¼ T � Tm

only through its �2 term, which becomes c2�
2 with c2 ¼

c20 þ c020�T. With this standard setup, the free energy of a

cluster of radius R is G½�R�, where �RðrÞ is the spheri-
cally symmetric OP profile of the cluster. Assuming, as in
[17], that for small supersaturation and large R, �RðrÞmay
be approximated with �0ðr� RÞ, where �0ðzÞ is the OP
profile for a planar interface centered at z ¼ 0, the cluster
free energy takes precisely the form (2), with C ¼ 0,

�s�� ¼ c020�2
s0�T, and ~�, ~�, ~� all linear functions of

�T, expressed in terms of c, 	, and �0ðzÞ [18]. At coex-
istence and to first order in the deviations from the �4

theory (viz. 	 ¼ 
 ¼ 0), we have for ~�ðTmÞ � �, etc.

� ¼ c�2
s0

3‘

�
1þ 1

4

þ 2

5

	

c‘2
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;

� ¼ 5‘
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c‘2
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(4)

where ‘ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c=c20

p
is a measure of the interface width.

A second effect that is absent in CNT but present in
nature and observed in simulations is that shapes of
clusters, far from being static, fluctuate widely away
from their mean shape [19,20]. To describe shape fluctua-
tions, we employ a field theory for the Canham-Helfrich
(CH) Hamiltonian, containing spontaneous-curvature and
bending-energy terms in addition to surface tension. A CH
interface Hamiltonian H s can be derived from the free-
energy functional (3) for small deviations of the interface
from planarity. Denoting by � the generic closed-surface
profile and by n̂ its outward normal, we obtain [18]

H s ¼
Z
�
dS

�
�� ��r � n̂þ 1

2
�ðr � n̂Þ2

�
; (5)

where � and � are the same as in Landau theory and
� ¼ 	�2

s0=ð3‘Þ under the same hypotheses for which

Eq. (4) holds. �GðRÞ can be evaluated explicitly [18]
for a quasispherical cluster [21], where only quadratic
deviations from sphericity are kept. The wavelength of

surface undulations is cut off at a lower limit a ¼ ��1=3
s

to account for the granularity of matter. We find that the
surface free energy has a form consistent with Eq. (2),

with new T-dependent parameters ~�, ~�, and ~� (whose
explicit expressions are given in [18]) and with C ¼
�ð7=3ÞkBT, which shows that small deviations around a
nominally spherical cluster shape simply add a universal
logarithmic correction to the mean-field functional form
of �G. This correction is responsible for the well-known

R�7=3 term in the exponential prefactor of the nucleation
rate [22].

CNT
CNT + offset 
CNT + Tolman
Landau

CNT
CNT + offset 
CNT + Tolman
Landau

FIG. 1 (color online). Gibbs-free-energy cost �GðnÞ of an
n cluster in units of kBT. Left: hard spheres at a packing fraction
of 0.5207, from [12]; right: NaCl at T ¼ 825 K, from [13]. Top
panels: blue crosses, MC data (selection of data points); red dotted
line, CNT best fit; black solid line, Landau-theory best fit. In all
fits, data for n & n�=5 are ignored. Bottom panels: deviation of
the fitting curves from the data. CNT [~� ¼ ~� ¼ C ¼ 0 in Eq. (2)];
CNT þ offset (~� ¼ C ¼ 0); CNT þ Tolman (~� ¼ C ¼ 0);
Landau (C ¼ 0). Values for � from CNT are the following:
hard spheres, ��d2 ¼ 0:724 (sphere diameter d); NaCl (cubic
nucleus), � ¼ 79:75 erg=cm2. In hard spheres, the optimal
�~�d2 is 0.737 for Landau theory (with ~� ¼ �0:017d and
~� ¼ �0:332d2), 0.741 for CNT þ offset (with 4��~� ~� ¼
�2:599), and 0.761 for CNT þ Tolman (with ~� ¼ 0:086d). In
NaCl (cubic nucleus), the optimal ~� is 88:87 erg=cm2 for Landau
theory (with ~� ¼ 0:716 �A and ~� ¼ 0:471 �A2), 83:74 erg=cm2 for
CNT þ offset (with 6�~� ~� ¼ �3:833), and 88:53 erg=cm2 for
CNTþ Tolman (with ~� ¼ 0:675 �A). Note the large improvement
over CNT obtained with just one more fitting parameter and
how similar is the quality of the fit based on CNT þ offset to
the Landau fit.
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Clearly, the parameters in Eq. (2) are determined by the
values of c and 	 in (3), as well as by the form of gð�Þ—all
system-dependent quantities that require a case-specific
theory. We here aim at elucidating the relative importance

of the different terms ~�, ~�, C implied by interface thickness
and shape fluctuations. To get a quantitative measure of
that, we directly fit the parameter values in (2) to the
numerical results for �GðnÞ for the two systems of
Fig. 1. Consistently with the assumptions underlying our
mesoscopic description, each fit is made only to data points

for sufficiently large n. We first include the leading /
~�n1=3 (‘‘Tolman’’ [23]) correction to CNT. As shown in
Fig. 1, this improves the quality of the fit significantly. The
error is reduced substantially in both systems, although not
monotonically. Only a marginal improvement is obtained

if both ~� and ~� are allowed in the fit. The inclusion of the
logarithmic shape correction gives no further appreciable
gain. Next, we attempted fitting the data by retaining just
the offset ( � 4�~� ~� ) in (2) beyond ~�. Alone, the simple
offset gave an improvement of about the same quality as
with all terms allowed. We conclude that corrections to
CNT exclusively deriving from a fluctuating cluster shape
appear to be much smaller than those arising, already in
Landau theory, from allowing a nonzero thickness of the
interface (shape fluctuations are not anyway immaterial
since they renormalize, even significantly, the Landau-
theory parameters [18]). Moreover, either the Tolman cor-
rection or, alternatively, the constant offset each lead to
significant fit improvement over CNT. The origin of both
terms is in the finite thickness of the interface, which
makes the reversible work to create a cluster systematically
smaller than what would be needed for the same cluster
with a sharp spherical interface.

The existing simulation data do not permit us to assess
the relative importance of the two smooth-interface con-

tributions ~� and ~� and of the logarithmic correction; more
specific work is needed in order to decide that case by case.
Using the 3D Ising model as a test system, we carried out
extensive simulations at moderate supersaturations, com-
puting the cluster free energy for the nucleation process
of magnetization reversal by the same method as in
Refs. [24–27]. We computed�GðnÞ for a number of values
of the field h (0:35; 0:40; . . . ; 0:65, in J units) and plotted
the ratio �ðnÞ of the surface free energy Fs ¼ �GðnÞ þ
j��jn to the area ð36�Þ1=3ðna3Þ2=3 of the cluster surface as
a function of the inverse radius n�1=3 (see Fig. 2). We
verified that, for all h values considered, clusters close to
critical indeed contain the vast majority of up spins in the
system, coherently with the physical picture at the basis of
our theories. It is evident that only the joint consideration

of ~� and ~� is able to reproduce the upward concavity of

�ðnÞ as a function of n�1=3 in the n region (n > 40) where

FsðnÞ / n2=3. A positive offset ~� > 0 is confirmed, as
expected from Landau-theory results for � and from the
formula for � in Eq. (5) [18]. In our regime of h,

the logarithmic term does not change the quality of the
fit; as shown in Fig. 2, this correction becomes sizeable
only at values of n outside the fit range. However, inclusion

of the logarithm has consequences on the optimal ~� values,
which reduce from � 0:10 to � 0:02 throughout the h
range considered (the Tolman length � [23] is zero for
the Ising model at coexistence [17]). From this example we

conclude that (a) neither ~� nor ~�, both arising from the
finite interface width, can generally be neglected in the
description of the nucleation free-energy barrier; (b) shape
fluctuations improve the description especially for small
cluster sizes (n < 80).
Far from being academic, the existence of these correc-

tions to CNT has a direct impact on the understanding of
experiments, in particular, on the all-important extraction

FIG. 2 (color online). The cluster interface free energy of the
3D Ising model in units of J=a2 (a being the cubic-lattice
spacing), plotted as a function of n�1=3 for various h values.
The temperature is T ¼ 0:6Tc; starting at T with all spins down,
the system is quenched to h. Two spins are part of the same
cluster if there is an uninterrupted chain of up spins between
them. The lattice consisted of 203 sites; for h ¼ 0:35 a calcu-
lation on 253 sites led to practically the same �GðnÞ. Three
different instances of umbrella potential were considered and all
led to the same �GðnÞ to within less than 0:1kBT [31]. Thick
blue lines, MC data for �GðnÞ; black lines, least-square fits of
the n > 80 data points for h ¼ 0:35 and 0.55, based on various
extensions of the CNT (see legend). Note that only the full
Landau expansion captures the upward curvature of �GðnÞ, and
that especially the shape fluctuations capture that of smaller
clusters. In the inset, different ways of extracting the interface
tension � out of finite-h values of �ð1Þ are compared: triangles,
CNT; crosses, Landau theory [C ¼ 0 in Eq. (2)]; open dots,
quasispheres [C ¼ �ð7=3ÞkBT]. Linear extrapolation of data
points at h ¼ 0 yields � � 1:60. The black dot is the value of
� calculated for the (001) interface (from Ref. [32]). The red
shading indicates � estimates from Eq. (6) for cluster shapes
intermediate between cubic (lower end) and spherical (upper
end). Gratifyingly, the ~� values extrapolate as they should to a
�0 which is higher than that of the (001) interface, and inter-
mediate between cubic and spherical shape—the average shape
being also intermediate between the two.
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of the interface free energy � from measured nucleation
rates. Assuming the standard activated expression for I, �
can be extracted from the slope of Y ¼ lnðI=I0Þ as a
function of X ¼ ðTm=�TÞ2 [28]. If CNT were exact, this
slope would be a constant throughout the region of liquid
metastability. When the more general Eq. (2) is employed
for �G�, the slope depends on the distance from coexis-

tence�T, as demanded by nonzero values of ~�, ~�, ~�,C and
their rates of variation with �T. Close to coexistence, one
can write YðXÞ as a power series in �T:

lnðI=I0Þ ¼ ��T2
m

�T2
� �0Tm

j�Tj þOð1Þ: (6)

Here � takes the same value as in CNT, � ¼
16��3=ð3kBTm�

2
sL

2
mÞ with Lm the latent heat of melting

per particle. However, �0 is not universal:

�0 ¼ �

�
1þ 3�0Tm

�
� 3�sLm�

�

�
; (7)

taking ~� ¼ �þ �0j�Tj þ . . . close to coexistence. For
instance, for the �4 theory it turns out that �0=� ¼ 1þ
3�s‘Lm=ð2�Þ> 0.

Because of (6), YðXÞ develops a concavity, which is
upward if �0 > 0, as is the case, for example, in colloids
(see below). The very important practical consequence is
that the solid-liquid interface free energy at coexistence
(�), the key quantity which one wishes to extract from
nucleation rates, is determined by the slope (�) of YðXÞ at
asymptotically large X and not from the slope, generally
different, at small X. As an example, deviations from
linearity in the YðXÞ plot are experimentally evident in
colloids, see, e.g., Refs. [29,30]. Figure 3 shows how
data should be read to extract �. Since this procedure is
not to our knowledge universally followed, this suggests

that at least some tabulated � values may need a revision.
Because the finite-interface corrections reduce the barrier
height compared to CNT, it is to be expected that the true
interface free energies are substantially smaller than be-
lieved so far.
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