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We consider a spin-orbit coupled configuration of spin-1=2 interacting bosons with equal Rashba and

Dresselhaus couplings. The phase diagram of the system at T ¼ 0 is discussed with special emphasis on

the role of the interaction treated in the mean-field approximation. For a critical value of the density and of

the Raman coupling we predict the occurrence of a characteristic tricritical point separating the spin

mixed, the phase separated, and the zero momentum states of the Bose gas. The corresponding quantum

phases are investigated analyzing the momentum distribution, the longitudinal and transverse spin

polarization, and the emergence of density fringes. The effect of harmonic trapping as well as the role

of the breaking of spin symmetry in the interaction Hamiltonian are also discussed.

DOI: 10.1103/PhysRevLett.108.225301 PACS numbers: 67.85.�d, 03.75.Mn, 05.30.Rt, 71.70.Ej

A large number of papers have been recently devoted to
the theoretical study of artificial gauge fields in ultracold
atomic gases (for a recent review see, for example, [1]).
First experimental realizations of these novel configura-
tions have been already become available [2,3]. This field
of research looks very promising from both the theoretical
and experimental point of view, due to the possibility of
realizing exotic configurations of nontrivial topology [4],
with the emergence of new quantum phases in both bosonic
[5] and fermionic [6,7] gases, and the possibility to simu-
late electronic phenomena of solid state physics. In the
case of Bose gases a key feature of these new systems is the
possibility of revealing Bose-Einstein condensation in
single-particle states with nonzero momentum.

By tuning the Raman coupling between two hyperfine
states of 87Rb atoms, the authors of [3] have reported the
first experimental identification of the new quantum phases
exhibited by a spin-orbit coupled Bose-Einstein condensa-
tion. Important features of the resulting phases were antici-
pated in the paper by Ho and Zhang [8] and discussed in the
same experimental paper [3]. The purpose of this Letter is to
provide a theoretical description of the phase diagram cor-
responding to the spin-orbit coupled Hamiltonian employed
in [3]. We point out the occurrence of an important density
dependence in the phase diagram which shows up in the
appearance of a tricritical point that, to our knowledge, has
never been predicted for such systems.

We will consider the mean-field energy functional (for
simplicity we set @ ¼ m ¼ 1)
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describing an interacting spin-1=2 Bose-Einstein conden-
sate at T ¼ 0, where c a and c b are the condensate wave
functions relative to the two spin components interacting

with the coupling constants gij ¼ 4�aij, with aij the cor-

responding s-wave scattering lengths, and
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is the single-particle Hamiltonian characterized by equal
contributions of Rashba [9] and Dresselhaus [10] spin-orbit
couplings and a uniform magnetic field in the x-z plane. In
Eq. (2) � is the Raman coupling constant accounting for
the transition between the two spin states, k0 is the strength
associated with the spin-orbit coupling fixed by the momen-
tum transfer of the two Raman lasers, � fixes the energy
difference between the two single-particle spin states,�i are
the usual 2� 2 Pauli matrices, while Vext is the external
trapping potential.
In the first part of the Letter we will consider uniform

configurations, neglecting the effect of the trapping poten-
tial (Vext ¼ 0) and assume a spin symmetric interaction
with gaa ¼ gbb � g and � ¼ 0. The effect of asymmetry
will be discussed afterwards. The ground state condensate
wave function will be determined using a variational pro-
cedure based on the following ansatz for the spinor wave
function:
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where N is the total number of atoms, V is the volume
of the system. For a given value of the average density
n ¼ N=V, the variational parameters are then C1, C2,
k1, and �. Their values are determined by minimizing
the energy (1) with the normalization constraintP

i¼a;b

R
d3rjc ij2 ¼ N (i.e., jC1j2 þ jC2j2 ¼ 1). Mini-

mization with respect to � yields the general relationship
� ¼ arccosðk1=k0Þ=2 (0 � � � �=4), fixed by the single-
particle Hamiltonian (2). Once the other variational pa-
rameters are determined, one can calculate key physical
quantities like, for example, the momentum distribution
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accounted for by the parameter k1, the longitudinal and
transverse spin polarization of the gas

h�zi ¼ k1
k0

ðjC1j2 � jC2j2Þ; h�xi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k21

q

k0
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and the density
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where � is the relative phase between C1 and C2. The
ansatz (3) exactly describes the ground state of the single-
particle Hamiltonian h0 (ideal Bose gas). In this case, for
� � 2k20, the energy, as a function of k1, exhibits two

minima located at the values �k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2=4k40

q
and the

ground state is degenerate, the energy being independent of
the actual values of C1 and C2. For �> 2k20 the two

minima disappear and all the atoms condense into the
zero momentum state k1 ¼ 0.

The same ansatz is well suited to discuss the role of
interactions. By inserting (3) into (1), we find that the
energy per particle " ¼ E=N takes the form

" ¼ k20
2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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where we have defined the dimensionless parameter
� ¼ jC1j2jC2j2 (0 � � � 1=4), and the function

Fð�Þ ¼ ðk20 � 2G2Þ þ 4ðG1 þ 2G2Þ� (7)

with the interaction parameters G1 ¼ nðgþ gabÞ=4, G2 ¼
nðg� gabÞ=4. The variational parameters to minimize the
energy are then k1 and �.

Let us first consider minimization with respect to k1. If
�> 2Fð�Þ the energy (6) is an increasing function of k1
and the minimum takes place at k1 ¼ 0. If instead �<
2Fð�Þ one finds that " is minimized by the choice

k1ð�Þ ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

4½Fð�Þ�2
s

; (8)

which generalizes the ideal gas result F ¼ k20.
Equations (7) and (8) explicitly show that the momentum
distribution is modified by the interactions. We find the
following result for the energy per particle:

" ¼ � �2

8Fð�Þ þG1 þG2ð1� 4�Þ: (9)

The ground state of the system can be found by looking for
the minimum of (9) with respect to�. One can easily prove
that the second order derivative of (9) with respect to � is
negative. This means that the minimum is achieved at the
limiting values of �. The ground state is then compatible
with the three following phases:

(I) The spin mixed or ‘‘stripe’’ phase with k1 � 0,
� ¼ 1=4 and hence h�zi ¼ 0. In this phase the atoms
condense in a superposition of two plane wave states
with wave vector �k1 and the density (5) exhibits fringes.
This configuration is characterized by a degeneracy asso-
ciated with the relative phase between the coefficients C1

and C2 which fixes the actual spatial position of stripes.
(II) The separated phase with k1 � 0, � ¼ 0 and hence

h�zi � 0, where the atoms condense into a single plane
wave state with wave vector either k1 (C2 ¼ 0) or �k1
(C1 ¼ 0), the actual value being determined by a mecha-
nism of spontaneous spin symmetry breaking.
(III) The single minimum or ‘‘zero momentum’’ phase

with k1 ¼ 0 and h�zi ¼ 0 where the atoms condense in the
zero momentum state. In this phase the gas is fully polar-
ized along the x direction (h�xi ¼ �1).
We first notice that the spin mixed phase is compatible

only with positive values of the interaction parameter G2,
favoring antiferromagnetic configurations. In fact in the
opposite case G2 < 0, the first order derivative @"=@� is
always positive and the ground state is always in the phase
separated configuration (II) or in the zero momentum
phase (III).
In the most interesting G2 > 0 case, the system will be

always in the phase (I) for small values of the Raman
coupling constant �. If the condition

k20 > 4G2 þ 4G2
2

G1

(10)

is satisfied, the systems will exhibit a phase transition (I) to
(II) at the frequency

�ðI–IIÞ ¼ 2

�
ðk20 þG1Þðk20 � 2G2Þ 2G2

G1 þ 2G2

�
1=2

: (11)

This generalizes the result derived in [8], which corre-
sponds to the low density (or weak coupling) limit of
(11), i.e., G1; G2 � k20. The transition frequency in this

limit approaches the density independent value

�ðI–IIÞ
LD ¼ 2k20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=ð1þ 2�Þ

q
(12)

where we have introduced the dimensionless interaction
parameter � ¼ G2=G1 ¼ ðg� gabÞ=ðgþ gabÞ. By further
increasing �, the system will enter the phase (III) at the
frequency

�ðII–IIIÞ ¼ 2ðk20 � 2G2Þ: (13)

This result, in the limit G2 � k20, was also discussed in

[11]. If instead the condition (10) is not satisfied, the
transition will occur directly from the phase (I) to (III) at
the frequency

�ðI–IIIÞ ¼ 2ðk20 þG1Þ � 2½ðk20 þG1ÞG1�1=2: (14)

In the strong coupling limit G1 	 k20 (14) approaches the
constant value k20.
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The critical point where the phase (II) disappears is fixed

[see Eq. (10)] by the condition GðcÞ
1 ¼ k20=4�ð1þ �Þ, cor-

responding to the critical value

nðcÞ ¼ k20=ð2�gÞ (15)

for the density. If n < nðcÞ, one has two transitions (I–II and
II–III), while if n > nðcÞ, only one phase transition (I–III)
can take place.

In Fig. 1, we plot the momentum k1, the energy per
particle E=N, the transverse and longitudinal spin polar-

izations h�xi, and jh�zij as a function of� for n < nðcÞ (left
column) and for n > nðcÞ (right column). In addition to the
results for the ground state (open circles), we also show the
various quantities for the three phases (colored lines).
Figures (a)–(d) reveal the emergence of the phase transi-
tions (I–II) and (II–III), while in (e)–(h) there is only the
transition (I–III). The figures also show that the transitions
(I–II) and (I–III) are accompanied by a jump in k1 [see (a)
and (e)] and consequently in h�xi [see (c) and (g)]. In
particular the jump in k1 associated with the transition
(I–III) is sizable and should be easily observable in experi-
ments. On the other hand only the transition (I–II) is
accompanied by a jump in the longitudinal spin polariza-
tion jh�zij. The transition (II–III) is instead characterized
by a continuous behavior of the relevant physical parame-
ters. The experimental conditions of [3] correspond to

values of the average density n much smaller than nðcÞ,
so the jump in k1 could not be detected because it is too

small at the transition (I–II). On the other hand the occur-
rence of this phase transition was clearly revealed by the
analysis of the spin distribution after time of flight (see
Fig. 2c of [3]).
In Fig. 2 we show the phase diagram for the three different

phases. The value of the spin polarization jh�zij and k1 are
reported in (a) and (b), respectively. The transition lines
separating different phases merge at a tricritical point at

n ¼ nðcÞ. The value of jh�zij always vanishes for n > nðcÞ.
However the phase transition (I–III) is well identified by the
behavior of the momentum k1. The parameters employed in
Fig. 2 correspond to rather large values of the critical density.

More accessible values of nðcÞ can be obtained employing
smaller values of k0 or larger values of � using different spin
states or different atomic species. Reducing the value of k0
would also have the advantage of increasing the spatial
separation between the fringes in the stripe phase (I), thereby
making their experimental detection easier.
The description of the quantum phases carried out in the

present work is based on the mean-field picture which
ignores the role of quantum fluctuations. In ordinary
Bose-Einstein condensed gases the mean-field approach
is justified if the gas parameter na3 is small. The spin-orbit
term in the single-particle Hamiltonian (2) is expected to
emphasize the role of quantum fluctuations. In particular
when the phase (III) approaches the phase (II), quantum
fluctuations are enhanced and, for large values of k0, the

usual Bogoliubov
ffiffiffiffiffiffiffiffi
na3

p
dependence of the quantum deple-

tion of the condensate is increased by the factor ðk20=gnÞ1=4.
The effect is, however, small for the current values of the
spin-orbit parameters.
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FIG. 1 (color online). k1, energy per particle E=N, transverse
and longitudinal spin polarization h�xi and jh�zij as a function
of �. Red dashed lines: stripe phase k1 � 0 and � ¼ 1=4; blue
dotted lines: separated phase k1 � 0 and � ¼ 0; green solid
lines: zero momentum phase k1 ¼ 0; open circles: ground state.
The parameters: G1=k

2
0 ¼ 0:2, G2=k

2
0 ¼ 0:05 (a)–(d),

G2=k
2
0 ¼ 0:16 (e)–(h).

FIG. 2 (color online). Spin polarization jh�zij (a) and k1=k0 (b)
as a function of � and density n=nðcÞ in three different phases
with G2 > 0. The white solid lines represent the phase transition
(I–II), (II–III) and (I–III). The parameters: g ¼ 100aB, where aB
is the Bohr radius, � ¼ 0:0012, k20 ¼ 2�� 80 Hz, correspond-
ing to nðcÞ ¼ 4:37� 1015 cm�3.
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Let us now discuss the effect of the trap. In order
to simplify the analysis we have considered harmonic
trapping with frequency !0 only along the x axis.
Without interaction, one can calculate the ground state
using a similar variation ansatz, replacing the plane waves

in (3) by the functions e�ik1xe�!0x
2=2, corresponding, in the

absence of the gauge field, to the usual harmonic oscillator
Gaussians. The energy per particle is easily calculated and
reads:

" ¼ !0

2
þ k20 � k21

2
� �

2k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � k21

q

� ðC�
1C2 þ C�

2C1Þ� k21
2k20

e�k2
1
=!0 : (16)

The ground state can be found by minimizing " with
respect to k1, C1, and C2 with the normalization constraint.
The first term in (16) is just the zero point energy due to the
presence of the trap. The following two terms are the same
as for the uniform case without interactions, i.e., (6) with
G1 ¼ G2 ¼ 0. The last term shows the effect of the trap,
fixing the relative phase between the coefficientsC1 andC2

in the ground state. Consequently the degeneracy occurring
in the uniform case will be lifted even in the absence of
interactions (where � ¼ 0). Physically this is the conse-
quence of the nonorthogonality of the two Gaussian states.
According to (16), for k1 � 0, the system prefers to stay in
the spin mixed phase, and exhibits density modulation in
space even without interactions. On the other hand, the
interaction is crucial for the appearance of the phase sepa-
rated configuration. Since the last term of (16) scales
exponentially, the effect of the trap is weak for k21 	 !0,
and becomes more and more important when k21 is compa-
rable to !0.

To describe the role of the interaction we implement the
mean-field approximation by solving numerically the
Gross-Pitaevskii equation for the condensate wave func-
tion using the gradient method in the same 1D trapping
conditions. We find that the properties discussed in the first
part of the work for the uniform system almost hold in the
trapped case. In Fig. 3 we show an example of the numeri-
cal calculation. The spin polarization as a function of �,
in the presence of trapping (red solid line), is compared
with our analytical results for the uniform case (blue
dashed line), using the density in the center of the trap.
There is good agreement between the two curves. We have
checked that a similar good agreement is ensured also for

larger values of the interaction parameter n=nðcÞ, confirm-
ing the general validity of the ansatz (3) for the spinor wave
function employed in the first part of the Letter.

We finally discuss the case � � 0 and gaa � gbb, cor-
responding to broken spin symmetry. In general one can
introduce three interaction parameters: G1 ¼ nðgaa þ
gbb þ 2gabÞ=8, G2 ¼ nðgaa þ gbb � 2gabÞ=8, and G3 ¼
nðgaa � gbbÞ=4. In the case of 87Rb atoms, the scattering

lengths relative to the spin states jF ¼ 1; mF ¼ 0i and
jF¼1;mF¼�1i are usually parameterized as aaa�c0,
abb¼c0þc2¼aab, with c0¼7:79�10�12Hzcm3 and
c2 ¼ �3:61� 10�14 Hz cm3. This corresponds to 0<
G2 ¼ G3 � G1. However, since the differences among
the scattering lengths are very small, by properly choosing
the detuning �, this effect can be well compensated,
and the properties of the ground state remain the same as
for the spin symmetric case. For example, using first order
perturbation theory, one finds that correction to the energy
per particle is

"ð1Þ ¼
�
G3 þ �

2

�
k1
k0

ðjC1j2 � jC2j2Þ (17)

where we have considered the low density (weak coupling)
limit. By choosing � ¼ �2G3 the correction (17) identi-
cally vanishes and the transition frequencies are not
consequently affected by the inclusion of the new terms
in the Hamiltonian. Using the 87Rb parameters introduced

above we find the value �ðI–IIÞ
LD ¼ 0:19EL (EL ¼ k20=2)

in agreement with the findings of [3] corresponding to

n=nðcÞ � 1. For higher densities, the value of � should
depend on � in order to ensure exact compensation.
In conclusion, we have investigated the phase

diagram of spin-orbit coupled two-component Bose-
Einstein condensates using a variation ansatz based on
the mean-field approximation. We predict a rich phase
diagram characterized by the occurrence of three different
quantum phases, and by a characteristic tricritical point
where the three phases merge at a critical value of
the density and of the Raman frequency. Important ques-
tions that remain to be investigated are the dynamic
properties of the system and its behavior at a finite
temperature.
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FIG. 3 (color online). Spin polarization jh�zij as a function of
� for the trapped case (red solid line), and for the uniform case
using the density in the center of the trap (blue dashed line). The
parameters are chosen as follows: !0 ¼ 2�� 20 Hz, k20=!0 ¼
4, gaa ¼ gbb ¼ 101:20aB, gab ¼ 100:99aB, where aB is the
Bohr radius. The density in the center of trap corresponds to
n ’ 3:9� 1013 cm�3.
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[3] Y.-J. Lin, K. Jiménez-Garcı́a, and I. B. Spielman, Nature
(London) 471, 83 (2011).

[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[5] T.D. Stanescu, B. Anderson, and V. Galitski, Phys. Rev. A
78, 023616 (2008); C. Wang, C. Gao, C.-M. Jian, and H.
Zhai, Phys. Rev. Lett. 105, 160403 (2010); C.-J. Wu, I.

Mondragon-Shem, and X.-F. Zhou, Chin. Phys. Lett. 28,
097102 (2011).

[6] J. P. Vyasanakere and V. B. Shenoy, Phys. Rev. B 83,
094515 (2011); J. P. Vyasanakere, S. Zhang, and V. B.
Shenoy, Phys. Rev. B 84, 014512 (2011).

[7] M. Gong, S. Tewari, and C. Zhang, Phys. Rev. Lett.
107, 195303 (2011); H. Hu, L. Jiang, X.-J. Liu,
and H. Pu, Phys. Rev. Lett. 107, 195304 (2011); Z.-Q.
Yu and H. Zhai, Phys. Rev. Lett. 107, 195305 (2011).

[8] T.-L. Ho and S. Zhang, Phys. Rev. Lett. 107, 150403
(2011).

[9] Y.A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
[10] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[11] Y. Zhang, G. Chen, and C. Zhang, arXiv:1111.4778.

PRL 108, 225301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

225301-5

http://dx.doi.org/10.1103/RevModPhys.83.1523
http://dx.doi.org/10.1038/nature08609
http://dx.doi.org/10.1038/nphys1954
http://dx.doi.org/10.1038/nphys1954
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevA.78.023616
http://dx.doi.org/10.1103/PhysRevLett.105.160403
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1088/0256-307X/28/9/097102
http://dx.doi.org/10.1103/PhysRevB.83.094515
http://dx.doi.org/10.1103/PhysRevB.83.094515
http://dx.doi.org/10.1103/PhysRevB.84.014512
http://dx.doi.org/10.1103/PhysRevLett.107.195303
http://dx.doi.org/10.1103/PhysRevLett.107.195303
http://dx.doi.org/10.1103/PhysRevLett.107.195304
http://dx.doi.org/10.1103/PhysRevLett.107.195305
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1103/PhysRevLett.107.150403
http://dx.doi.org/10.1088/0022-3719/17/33/015
http://dx.doi.org/10.1103/PhysRev.100.580
http://arXiv.org/abs/1111.4778

