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Molecular dynamics simulations are used to investigate the diffusion properties of one-component
plasmas and binary ionic mixtures from the weakly to the strongly coupled regimes. A physically
motivated model for the diffusivities is proposed that reproduces the simulation data and gives insight into

the nature of ionic motions and interactions in plasmas across the coupling regimes. The model extends

the widely used Chapman-Spitzer theory from the weakly to the moderately coupled regime. In the
strongly coupled regime, diffusion is modeled in terms of thermally activated jumps between equilibrium
positions separated by an energy barrier. The basic ideas discussed are applicable to the study of other

transport coefficients.
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High-fidelity computational modeling of many high-
energy density laboratory experiments and astrophysical
systems require accurate knowledge about the microscopic
transport properties of plasma mixtures over a wide range
of physical regimes. Of these properties, ionic transport
coefficients such as diffusivities and viscosities play a
critical role in various phenomena. For example, they are
central to the modeling of inertial-confinement fusion im-
ploding capsules since they affect the instability driven
mixing of the heavy elements shell that encloses the lighter
fuel [1] and influence the recently advanced plasma-
physics effects [2]. In astrophysics, ionic transport is es-
sential for understanding the composition of giant planets
and for modeling the sedimentation of heavy elements in
white dwarf stars and neutron stars’ crusts that can strongly
alter their light curves and nucleosynthesis [3]. All these
physical systems, albeit involving very different chemical
compositions, have in common a wide range of Coulomb
couplings concurrently traversed from the weakly coupled
regime studied in traditional plasma physics to the moder-
ately and strongly coupled regimes where conventional
estimates based upon, e.g., the Chapman-Spitzer (CS)
theory [4-6], break down. In this Letter, we present an
approach to the interpretation and modeling of the coef-
ficients of ionic diffusion across the coupling regimes. We
calculate the diffusion coefficients with molecular dynam-
ics (MD) simulations on simple, but physically relevant
plasma models over the entire range of coupling and for a
large variety of compositions [7]. We validate the CS
theory in the weakly coupled regime and extract the actual
value of its ad hoc cutoff parameters. We show how the CS
theory can be simply extended to the moderately coupled
regime with no additional parameter. When ions are
strongly coupled, the generalized CS theory breaks down
but can be smoothly replaced by a model based upon the
so-called “‘cage” effect.

Our MD simulations are based on a parallel implemen-
tation of the particle-particle particle-mesh algorithm that
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simultaneously treats long- and short-range encounters.
The calculations are done with enough particles (5000 =
N = 200000), over long enough time scales (1638.4 =
tw, = 6553.6) to ensure convergence with a statistical
uncertainty of, at most, ~5% at the smallest couplings
(< 1% elsewhere). Transport coefficients are calculated
using Kubo formulas; e.g., the self-diffusion coefficient
isD = k"TT o Z(1), where Z(t) is the normalized velocity
autocorrelation function (VAF) of the species considered
[8]. The calculations are particularly demanding at small
couplings due to a long collision mean-free path, which
explains why ab initio validation of CS has been imprac-
tical before now. Previous MD data were collected at
moderate and strong couplings and modeled with brute
force, giving unphysical fits that are invalid outside the
interpolation interval [3,9-11]. Besides CS-like theories
[5,6], Rosenfeld, Nardi, and Zinamon [12] developed a
practical model for strongly coupled binary ionic mixture
(BIM) diffusivities in terms of those for effective hard
spheres (with ~30% accuracy), but the model gives little
insight into the underlying physics. A promising kinetic
theoretic approximation to extend CS to higher coupling
was described in Ref. [13].

We first consider the unmagnetized one-component
plasma (OCP) model [14], a system of identical ions
(mass m, charge ¢ = Ze, density n, and plasmon fre-

quency w, = V4mg*/m) at temperature T interacting
through the Coulomb potential and immersed in a uni-
form neutralizing background. The OCP is characterized
by the coupling parameter I' = ¢>/akzT, where a =
(47rn/3)~1/3 is the Wigner-Seitz radius. As I increases,
the OCP changes from a nearly collisionless, gaseous
regime for I' < 1 through an increasingly correlated,
liquid-like regime to the crystallization into a lattice
at T',, = g*/akgT,, =~ 175 [10]. Figure 1 shows our
MD results for the self-diffusion coefficient D with
0.075 =TI =T, along with the model described below.
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FIG. 1 (color online). Self-diffusion coefficient D* = D/a*w »
of the OCP vs coupling I" as obtained from MD (circles), along
with the numerical fits to the data using (2) and (4) over I" < 2.
(blue line) and 50 = T" (red line), respectively. The dashed line
shows the I' < 1 (CS) limit of (2). Top inset: same for the
Yukawa OCP with k = 0, 1, 2, 4 (from bottom to top). Bottom-
left inset: generalized CS collision frequency (2) (for k = 0) and
its I' < 1 limit (dashes). The dotted line shows the inadequacy
of a commonly used ansatz to cure CS and based on the
Rutherford scattering formula, InA = 0.51In(1 + C%A2/r2) [6].
Bottom-right inset: ratio of MD and model data shown in
main frame.

Elementary theories of diffusion assume binary collisions
and lead to
1 kgT 1
D =§Uthlmfp =7;: (1)
where vy, is the thermal velocity, I;,g, = vy /v the mean-
free path, and » the collision frequency. For weakly
coupled plasmas, I' << 1, the CS theory gives v = vcg =

4

=4/ n
120 lnACs, where Vo = 3 W/mm and

_ Ap\ C
lnACS = ln(C Z) = IH(W>

is the Coulomb logarithm. The latter arises because of
the long-range nature of the Coulomb force and it is

usually expressed in terms of the Debye length Ap =

Vamg®n/kgT (which represents the largest impact pa-
rameter beyond which interactions are screened out),
and of the distance r, = ¢?/kgT (which characterizes
the smallest impact parameter). C is a correction to these
somewhat arbitrary cutoff parameters that is difficult
to calculate analytically but, as we shall see, can
be extracted from microscopic simulations (C =1 is
usually assumed). CS is clearly inapplicable when
I > (C/~/3)*3, since it leads to negative diffusivities.
We propose to extend the CS collision rate to higher
coupling I' as follows:

A
v = avylnA with InA = 1n<1 + C—D). (2)
)

The factor « is a correction to the fact that vg corre-
sponds to a single Sonine polynomial approximation in
the Chapman-Enskog solution of the plasma kinetic equa-
tion [4]. The generalized Coulomb logarithm, InA, is
always positive and reduces to InAqg for I' < 1. The
blue line in Fig. 1 shows the result obtained with
Eq. (2) when the parameters «, C are fitted to the MD
data over the range I' =2, giving a = 0.647 and
C = 2.159. The model matches the data very well, and
bridges the weakly and moderately coupled regimes up to
I' ~ 30, while the fit was done for I' = 2. Our MD data
validate the CS theory at small coupling I' = 0.2 (dashed
line in Fig. 1) and give access to the correction factors «
and C. In the regime 4 = I" = 30, the collision frequency
saturates at v =~ 0.25w,, (see bottom inset of Fig. I).
Beyond I' = 30, our extended CS model breaks down.
As discussed in Refs. [10,15], the dynamics enter a dis-
tinctive, liquid-like regime where, pictorially, each parti-
cle finds itself trapped for some time in the cage formed
by its immediate neighbors, and eventually escapes into a
neighboring site when a thermal fluctuation helps it pass
the energy barrier of the cage. By applying transition-
state theory [16], Eyring obtained D = 8k, where § is
the distance between successive cages and

kB_TefAF*/kI,T — pkB_TeAS*/kBefAU*/kBT (3)

k=
Py h

is the frequency of jumps from cage to cage. Here, p = 1
is a transmission coefficient, and AS* and AU are the
entropy and energy of activation per ion (4 is Planck’s
constant), respectively. In dimensionless units, the Eyring
model reads [17]

D

az(u

D* =

A pr_A -
=_¢ = _ ¢~ YT,/T) 4)
, I r

in terms of two parameters A and B (or alternatively
v = BI',), where we assume that AS* and AU" are
independent of T over the small liquid regime 50 = T" =
I',,. The red line in Fig. 1 shows the result obtained using
Eq. (4) when A, B are fitted to the MD data over the range
50=TI=T,, yielding A =1.52 and B = 0.0082. The
model (4) matches the data remarkably well down to
I' ~ 25 where it merges with our generalized CS model.
Interestingly, I' ~ 25 roughly corresponds to the value at
which the viscosity coefficient reaches a shallow mini-
mum, separating the dense gas to the liquid-like regimes.

Similar agreement is found when the Coulomb potential
is replaced by the Yukawa potential e " /r, where the
inverse screening length, «, mimics electronic screening
[18]. This is illustrated in the inset of Fig. 1 for ka = 0, 1,
2, and 4; the fitting parameters are collected in Table I and
will be commented elsewhere.
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TABLE I. Model parameters obtained by fitting the MD data
shown in Fig. 1 (values of I',, at finite x are taken from
Ref. [18]). Note the relation AU* ~ 1.2 — 1.4kzT,,.

ka T, a C A B=AU*/(¢*/a) v

0 175.0 0.647 2159 1.52 0.008 20 1.41
1 2174 0374 3265 1.73 0.006 27 1.37
2 440.1 0236 3.551 232 0.00295 1.30
4 3837. 5.46 0.000316 1.21

We now show that our approach extends to mixtures. We
consider the binary ionic mixture model, consisting of two
ionic species j = 1,2 (charge g; = Z;e, mass m , number
density nj, concentration X; = nj/n, n=n; +n,, and
mass fraction X;) at temperature 7 immersed in a uniform
neutralizing background [19,20]. We find it convenient
to characterize the BIM coupling strength by I' =
(Z5/3Ye? JakyT, where (.) is the number weighted average
and a = (3/47n)'/3. A thorough study of BIMs is quite
involved since BIMs depend on four parameters, e.g.,
m;/my, Z,/Z,, x,, and I', compared with only one for
the OCP. In the weak to moderate coupling regime, we
write the self-diffusion coefficient of each species as
D; =krﬁ—/TVlj in terms of the collision frequency v; =
a;v InA j» and the Coulomb logarithm,

Ap C’
InA; = ln(l + er—c) = ln(l + F3—;2) 5)
with Ap = kT /4mn{g*) and r, = 4.4 For the refer-
ence frequency, v, we choose that which was used in the

CS inter-species collision frequency vcg = vglnAcg,
where

4 o (m?  ¢q3
= _pn/2m. |- 0
0T 3TN Gy mymy (k)2

and InAcg = In(CAp/r.) (the Chapman calculation
C = 4). For the strongly coupled regime, we again refer
to the cage model and propose

D _Aj
J aza)p r

where ®, = y4m(g)*/(m) is the plasmon frequency.
Figure 2 shows a collection of results for D; and D,
obtained for fully ionized H/D-, H/He-, He/C-, and
H/C-like mixtures over a wide coupling range. The fitting
parameters and their variation with the BIM parameters
will be discussed elsewhere. The MD data show two dis-
tinctive regimes at small and large coupling that can be
accurately reproduced by (5) and (6), respectively.

Our model for the self-diffusivities can be used to accu-
rately estimate the mutual diffusion coeffcient D), =
JD;, involved in Fick’s law of diffusion [19], where [J

exp(—B;I), (6)
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FIG. 2 (color online). Dimensionless self-diffusion coeffi-
cients D j/aza) p for various BIMs along with our model (see
fitting parameters in Table II). For clarity, plots are shifted
vertically [7].

is a thermodynamic factor (J = (Z?)/(Z)* atT' < 1) [13]
and D, = % % where v, is the friction [in CS, v, =
volIn(4Ap/r,.)] [6]. Indeed, our MD data [7] confirm the
previously established [12,13,19] empirical expression for
Dy, in a BIM in terms of the self-diffusion coefficients
D, = x,D; + x;D, of the same BIM (or, equivalently,
1/v, = X,/v, + X,/v,). This mixing rule could poten-
tially be extended to multicomponent mixtures.

The microscopic particle dynamics in BIMs are rich and
varied, and its relation to transport properties on hydro-
dynamic scales is subtle. The study of isotopic mixtures,
i.e., with ¢; = ¢, and m; = m,, provide a nice illustration
of this. In isotopic mixtures, static particle distributions,
like the pair-distribution functions, are all equal since they
are mass independent. On the contrary, kinetic quantities
like the momentum collisional exchanges are expected to
depend on the mass ratio. We first consider the case in
which species 2 is a trace element, i.e., x, < 1 and
m,/m; = 2,10, 100 (see Table II). While the mass depen-
dence of the diffusivities D, alluded to above is apparent,
other noticeable features appear: with x, = 0.005,
(i) D,(100) = D,(10) for all T', i.e., the self-diffusivity of

TABLE II. Impurity self-diffusivities D, in isotopic BIMs in

units of ajw,; independent of m, and x, to facilitate the

comparisons.

X, e I'=05 I'=1 I'=50 I'=100 I'=150
2 5.54 1.87  0.0215 0.0067  0.00292

0.005 10 4.87 1.77  0.0210 0.0066  0.00288
100 473 1.78  0.0206 0.0065  0.00284
2 5.20 1.858 0.0190 0.00590 0.00295

0111 10 3.98 1.459 0.0171 0.00537 0.00240
100 261 0.933 00105 0.00370 0.00158
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FIG. 3 (color online).

(a) Comparison of VAFs in isotopic
BIMs with a heavy trace element (x, = 0.005). (b) Variation
with I of D,/D, in isotopic BIMs. (¢) Comparison of VAFs in
isotopic mixtures with light impurities (x, = 0.995). (d) VAFs
in fully ionized H/Fe-like mixtures.

a heavy impurity is nearly mass independent, while
(i1) D,(2) = D,(10) = D,(100) at large I', i.e., the heavy
impurity self-diffusivity is very weakly dependent on its
mass in the liquid regime. The macroscopic dynamics,
however, do not seemingly correlate with these findings;
e.g., the VAFs are strongly mass dependent: in Fig. 3(a),
Z,(1) oscillates and reaches negative values (caging) when
m,/m; = 2 but monotonically decays with no sign of
strong-coupling effects when m,/m; = 100. Fact (i) can
be understood using the microscopic theory of Brownian
motion [8]: for a heavy impurity m, >> m, in a fluid of
light particles,

Vy =

1 (o)
£ [0 di{f (1) - £(0))eq,

where f(7) is the force acting on a fixed impurity due to its
interaction with the fluid light particles, (. ), is the thermal
average in the presence of the fixed impurity; the latter are
independent of m, and so is D, = kzT/m,v, for all T, as
found in our MD calculations. The data in Table II for
Xy = 0.111 show that the Brownian limit quickly breaks
down since D,(10) # D,(100). As x, increases, the light
element self-diffusivity is also increasingly affected by the
other species. However, Fig. 3(b) shows that the effect is
much stronger at small coupling (e.g., when x, = 0.43 at
I' = 0.5, D,(100)/D, > 4, while D,(2)/D; = 1.1), while
in the liquid regime (iii) D; = D, for all mp, which is
reminiscent of fact (ii) above. However, a look at the
microscopic dynamics could suggest the contrary since,
as illustrated in Fig. 3(c), the light species VAFs oscillate
and vanish on very different time scales depending on m,.
A detailed Fourier analysis (not shown) [7,21] allows one

to reconcile the microscopic and hydrodynamic behaviors.
Shortly, in the liquid regime, a BIM supports collective,
longitudinal, high-frequency (plasmon) excitations of
wavelengths down to a few interparticle distances [22],
and also sustains the propagation of shear waves with
wavelengths of the order of the interpaticle separation.
The former are responsible for the long-lived oscillatory
behavior, but barely contribute to the zero-frequency
component of the VAFs that gives the diffusivities
(Kubo formula). On the hydrodynamic scale, however,
self-diffusivities are determined almost entirely by the
transverse modes. The same effect is at the origin of the
Stokes-Einstein relation that relates diffusion and viscosity
coefficients in all simple liquids and OCPs [10]. Of course,
the diversity in the BIM’s dynamics is even richer when
both mass and charge ratios are varied. This is briefly
illustrated in Fig. 3(d) that shows VAFs in asymmetric
H/Fe-like mixture (relevant, e.g., to neutron stars). Here,
because of its high electric charge (Z,/Z, = 26), Fe ions
can be strongly coupled among themselves (coupling is
o« 7%), while H ions are weakly coupled to other H ions
(o< Z%) and moderately coupled to Fe ions (« Z,Z,). Thus,
H diffuses like in a weakly to moderately coupled plasma,
while Fe diffusion is limited by strong coupling effects.

In summary, the Chapman-Spitzer result has been
validated at small coupling and extended to moderate
couplings by changing Acg by 1 + Acg in the Coulomb
logarithm. Remarkably, a similar extension was validated
for a quite different relaxation mechanism, the temperature
relaxation rates in electron-ion plasmas [23,24]. This
strongly suggests that this extension of conventional
plasma theory might be applicable to other plasma models
(e.g., better screening model) and other transport proper-
ties (e.g., viscosities and conductivities). Recent progress
in kinetic theory (e.g., [13,23,25]) may be useful to analyti-
cally predict the values of the parameters (such as «, C)
without the need for demanding microscopic simulations.
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