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Runaway positrons can be produced in the presence of runaway electron avalanches in magnetized

plasmas. In this Letter, we determine the positron distribution, the fraction of runaway positrons, and the

parametric dependences of their synchrotron radiation spectrum. We show that the maximum production

occurs around �e ’ 30, where �e is the Lorentz factor of the fast electrons. For an avalanching positron

distribution typical of tokamak plasmas, the maximum of the synchrotron radiation spectrum should be

around a micron. The radiated power and spectrum shape are sensitive to the plasma parameters. Apart

from its intrinsic interest, detection of radiation from positrons could be a diagnostic tool to understand the

properties of the medium they propagate through.
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Introduction.—Relativistic electron populations origi-
nating from runaway electron avalanches have been fre-
quently observed in various plasmas, e.g., large tokamak
disruptions [1] and electric discharges associatedwith thun-
derstorms [2]. The energetic electrons produced in the
avalanches may give rise to electron-positron pair produc-
tion. Pair production can occur in collisions between run-
away electrons and thermal ions if the runaway energy
exceeds three times the electron rest mass. In electric dis-
charges associated with thunderstorms, electrons can be
accelerated up to 100 MeV [2]. In postdisruption plasmas
in large tokamaks, the energy of the runaway electrons is in
the 10–20 MeV range. Therefore, in these plasmas the
typical runaway energy is well above the threshold for
pair production, and positrons should therefore be present
in large quantities [3]. The positrons generated by runaway
electron avalanches are already highly relativistic at birth;
in addition, they experience acceleration by the electric
field. The aim of the present work is to determine the
distribution of positrons at birth, their subsequent fate,
and the synchrotron radiation emitted by them. The pro-
duction rate is calculated by using a pair-production cross
section valid for arbitrary energies and a runaway electron
distribution typical for avalanching. To obtain the positron
velocity distribution, the Fokker-Planck equation including
the positron production and annihilation rates and slowing-
down terms is solved. The result is used to calculate the
fraction of runaway positrons and the parametric depen-
dences of their synchrotron radiation spectrum.

Positron production.—The cross section for the produc-
tion of electron-positron pairs by electrons in the field of a
nucleus is calculated numerically in Ref. [4] for incident
particle energies from the threshold to 100MeV. A fit to the
numerical results over the entire energy range is

�tot ¼ aZ2ln3
�
�e þ x0
3þ x0

�
; (1)

where a ¼ 5:22�b (1b ¼ 10�28 m2), x0 ¼ 3:6, Z is the
charge of the stationary particle, and �e is the Lorentz
factor of a fast electron. For high energies Eq. (1) agrees
with the ultrarelativistic limit of the cross section for pair
production ���1 ’ ½28ðZ�reÞ2=27��ln3�e [5], where

� ’ 1=137 is the fine-structure constant, and re is the
classical electron radius. The ultrarelativistic approxima-
tion ���1 describes well the behavior of the cross section

for incident electron energies above 150mec
2, where me is

the electron rest mass. Near the threshold, Eq. (1) agrees
with the expression for the threshold total cross section,
which is �th ¼ 0:013Z2ð�e � 3Þ3�b [4].
Fig. 1 shows the total cross section from Eq. (1) as a

function of incident electron energy, together with the
ultrarelativistic approximation ���1, the threshold ap-

proximation �th, and the annihilation cross section. The
threshold formula is reasonably correct for energies below
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FIG. 1 (color online). Total cross section in �b for Z ¼ 1, as a
function of the electron Lorentz factor. The dash-dotted line is
the ultrarelativistic approximation ���1, the dashed line is the

threshold approximation �th, and the solid line is the numeri-
cally calculated cross section (1). The annihilation cross section
(2) is a function of the positron Lorentz factor and is shown by a
dotted line.
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5mec
2. Since the runaway electrons typically have energies

in the range 5 to 70mec
2, �tot should be used.

Since the positron creation cross section increases rap-
idly from a threshold, the positrons will be born with
Lorentz factors �þ � 1. The process of annihilation is
about two orders of 1=� more probable than that of creat-
ing positrons. The dotted line in Fig. 1 shows the annihi-
lation cross section,

�an ¼ �r2e
1þ �þ

�
�2þ þ 4�þ þ 1

�2þ � 1
lnð�þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ � 1

q
Þ

� �þ þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ � 1

q
�

2��=pþ
1� e�2��=pþ

: (2)

The positron production rate dnþprod=dt � Sp can be

written in a general form as Sp¼ni
R
p>pmin

fREe �totved
3pe¼

2�ni
R
p>pmin

fREe �totvepe?dpe?dpek, where ni is the num-

ber density of the ions, �tot is given in Eq. (1), and the
threshold momentum is pmin ¼ 3. Here fREe is the runaway
electron distribution function, pe ¼ �eve=c is the normal-
ized relativistic momentum, c is the speed of light, and
k and ? are parallel and perpendicular directions with
respect to the magnetic field.

If the normalized parallel electric field E ¼
ejEkj�=mec � 1, the runaway tail has the character of a

beam, so the parallel momentum is much larger than the
perpendicular, pe? � pek ’ pe. Here, �¼1=4�r2enecln�
is the collision time for relativistic positrons and electrons
and ln� is the Coulomb logarithm. If E � 1, most of the
runaway electrons are produced by avalanching, in which
case the runaway electron density nr increases according to

dnr=dt’nrðE�1Þ=cz�ln� [6], where cz¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðZeffþ5Þ=�p

and Zeff is the effective ion charge. Then the distribution
function of relativistic runaway electrons is

fREe ðpek;pe?Þ¼ nrÊ

2�czpek ln�
exp

�
� pek
cz ln�

� Êp2
e?

2pek

�
; (3)

where Ê ¼ ðE� 1Þ=ð1þ ZeffÞ [7]. In the limit of pek ’
pe � 1, we can approximately write pe ’ �e. To illustrate
howmany positrons are generated as a function of runaway
electron energy, the differential production rate can be
calculated by using the runaway electron distribution
from Eq. (3) and evaluating the integral over pe? in the
expression for Sp,

dSp
dpe

’ ninrc

cz ln�
exp

�
� pe

cz ln�

�
�tot: (4)

dSp=dpe is the number of positrons produced per second

per unit volume by the electrons with momentum pe cor-
responding to �e ¼ Ee=mec

2. Note that although the dis-
tribution function in Eq. (3) is derived for toroidally
symmetric plasmas, runaway electron distributions are gen-
erally expected to be beamlike in any circumstances, so the
results should be qualitatively similar in other plasmas.

The differential positron production rate from Eq. (4) as
function of runaway energy is shown in Fig. 2. For ln� ¼
10, the maximum production occurs around �e ’ 30 and
the ultrarelativistic cross section used in Ref. [3] over-
estimates the positron production. As an example, the
number of runaway electrons in a postdisruption plasma
with a runaway current Ir is Nr ¼ 2�RIr=ec, where R is
the major radius of the torus. For R ¼ 3 m and Ir ¼ 1 MA,
we have Nr ¼ 4� 1017, and we assume that the runaways
are concentrated in a beam of total volume 1 m3, then the
runaway density is nr ¼ 4� 1017 m�3. Taking into ac-
count collisions only between runaway electrons and hy-
drogenic ions with density ni ¼ 5� 1019 m�3, we find

that the production rate is Sp ¼ ðnrnic=cz ln�Þ�R1
3 e�p=cz ln��totdp ’ 1:5� 1013 s�1 m�3 (for ln� ¼ 10

and Zeff ¼ 1:6). Also, collisions with thermal electrons
and impurities contribute to the number of positrons cre-
ated. The number of positrons created in collisions with
electrons is about the same order of magnitude as that from
collisions with hydrogenic ions (although the threshold
momentum is higher, most of the runaway electrons typi-
cally do exceed that as well). Sp should therefore be

multiplied by Mp � 1þ ne=ni þP
znzZ

2=ni, where the

summation is over all impurity species (regardless of
whether they are fully ionized or not). Due to the substan-
tial amount of high-Z impurities present in the postdisrup-
tive plasmas, this multiplicative factor can be several
orders of magnitude. During a tokamak disruption, it has
been estimated that at least 1 g of carbon can be released
from the wall and reach the plasma center in less than 1
millisecond [9]. This amount of carbon, if it is distributed
uniformly in a volume of about 80 m3, would correspond
to a multiplicative factor ofMp ’ 450. Note thatMp can be

large even if Zeff is order unity, because the expression for
Mp contains the full nuclear charge.

Source of positrons.—The production rate given in
Eq. (4) only gives the number of positrons generated for
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FIG. 2 (color online). Differential production rate normalized
to ninrc=cz as function of runaway energy from (4) using the
runaway distribution from (3). The dash-dotted red line uses
the ultrarelativistic approximation of the cross section ���1, and

the solid line the numerically calculated cross section (1). Thin
lines are for ln� ¼ 10 and thick lines are for ln� ¼ 15.
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a certain incident electron energy and says nothing about
their energy. If the probability distribution of positrons
with momentum pþ generated from electrons of momen-
tum pe, F ðpe; pþÞ, is known, the positron velocity
distribution can be calculated by using sp � dfþ=dt ¼
ni
R
fREe �totveF ðpe; pþÞdpe as the source term in the

kinetic equation. The production rate Sp defined in

Eq. (4) is the integral of the quantity we need to find
dnþ=dt ¼ Sp ¼ Rðdfþ=dtÞd3pþ.

The mean energy of the positrons generated by an
incoming electron with momentum pe, hEþiðpeÞ ¼R
EþðpþÞF ðpe; pþÞdpþ, has been calculated numerically

in Ref. [4] and can be written as

hEþi
Ee

¼ 1

3
� 0:0565 ln

Ee

3mec
2
: (5)

Here, the constants (1=3, 0.0565) are fitted parameters. The
evaluation of the integral in sp is complicated by the fact

that the relation of EeðEþÞ cannot be given in a closed form
for Eq. (5). Therefore, we fitted the data given in Ref. [4]
with a function that allows us to give EþðEeÞ in an inver-
tible form. The new fit has the form Eþ ¼ 0:44E0:69

e (en-
ergies in MeV) and is slightly better in the high-energy
region. The inverse can be obtained by inverting EþðEeÞ or
fitting, and the result is Ee ¼ 3:28E1:445þ . From this we can
calculate the relation between the electron and positron

momenta by using E=mec
2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
p

. When the electron
and positron momenta are large p2 � 1, this leads to pe ¼
4:42p1:445þ .

A simple estimate for the positron source can be found
by solving the integral in sp assuming that F ðpe; pþÞ is a
delta function at a point when Eq. (5) is satisfied, so that

s�p ¼
Z

fREe �totve�ðpe � 4:42p1:445þ Þ4�p2
edpe; (6)

where pþ ¼ �þvþ=c is the normalized momentum of the
positrons. We have verified that the source term sp will be

similar even if we model the probability F ðpe; pþÞ with a
Maxwellian instead of a delta function.

Positron distribution.—In the absence of an electric
field, a positron usually slows down initially due to

synchrotron radiation emission, and when it has reached
mildly relativistic energies collisions take over. For the
energies of interest (�þ & 50) collisional slowing-down
dominates, and the positron distribution function can be
calculated from the kinetic equation

@fþ
@t

¼ 1

�p2þ

@

@pþ
½ð1þp2þÞfþ��nevþ�anfþþspðpþÞ;

(7)

where the first term on the right is slowing down,
the second is annihilation, and the last is the production
rate.
Substituting the positron production rate from Eq. (6)

into Eq. (7) allows us to determine the steady-state positron
distribution. Figure 3(a) shows the numerical solution of
Eq. (7), with sp from Eq. (6) and�an from Eq. (2). It shows

that most positrons that survive the slowing-down without
annihilation will have momentum below pþ ¼ 10 (corre-
sponding to energies less than 5 MeV). The total number
of positrons in the above-mentioned example (for Sp ¼
1:5� 1013 s�1 m�3 and �¼0:067s) is nþ¼8�1012 m�3.
Taking into account also the multiplicative factor Mp, the

number of positrons should be larger than in the case of
positrons created by intense laser-solid interactions [8];
however, also the volume of the magnetic confinement
device is also larger, and therefore detection is more chal-
lenging. The lifetime of a positron can be estimated from
the annihilation cross section �p ¼ 1=nevþ�an, and it is

expected to be of the order of seconds.
If the electric field is strong enough, the positrons will

run away in the opposite direction to the electrons and will
acquire velocities close to the speed of light. In Eq. (7) the
influence of the electric field on the distribution function
has been neglected. We can nevertheless estimate the
number of positrons that run away by investigating how
many positrons have velocities above the critical velocity

vc ¼ c=
ffiffiffiffiffiffi
2E

p
. When the electric field is neglected, the

distribution function is isotropic in velocity space, whereas
a tail is pulled out in the direction of the magnetic field if
the electric field is retained. Interestingly, the neglect of the
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FIG. 3 (color online). (a) Normalized positron distribution as a function of normalized momentum. (b) Fraction of positrons that run
away as a function of the normalized electric field.
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electric field in the kinetic equation has a surprisingly
small effect on the number of tail particles, as has been
shown by full numerical simulations of runaway electrons
in Ref. [10]. The number of particles in the runaway region
can be estimated as nþrun ¼ 4�

R1
pc
fþðp2 � p2

cÞdp [10].

Figure 3(b) shows the fraction of positrons that run
away as a function of the normalized electric field. Since
pc � pþ, almost the whole positron population can be
expected to run away nþrun ’ nþ.

Positron annihilation has been detected in solar flares
[11] and from outside the Solar System [12]. In those cases
positron annihilation occurs mostly after positronium
formation, which is quite unlikely to occur in tokamaks,
where the neutral density is very low. Detection of
the annihilation radiation of runaway positrons in toka-
maks is difficult, because it is overwhelmed by the
bremsstrahlung radiation from the electron population.
On the other hand, the synchrotron (and bremsstrahlung)
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FIG. 4 (color online). Synchrotron radiation spectrum normalized to the positron number density, for an avalanching distribution
from (3). Unless otherwise stated, the parameters are the following: magnetic field B ¼ 2:27 T, parallel electric field Ek ¼ 20 V=m,

major radius R ¼ 1:8 m, effective charge Zeff ¼ 1:6, Coulomb logarithm ln� ¼ 10, and electron density ne ¼ 3� 1020 m�3. The rest
of the parameters are changed according to the legend of the figures: (a) major radius, (b) density, (c) effective charge, (d) magnetic
field, (e) Coulomb logarithm, and (f) parallel electric field.
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radiation of runaway positrons is peaked in the direction
opposite from that of the runaway electrons, and this may
be possible to detect. The spectral density of the emitted
synchrotron radiation for runaway electrons and positrons
is approximately [13],

Pð�Þ ’ �mec
3re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

p
�5R�

vuut �
I0ðaÞ þ 4	

1þ 	2
I1ðaÞ

�

� expð�
Þ½W=�m�; (8)

where � is the wavelength, InðaÞ is the modified Bessel

function of order n, a ¼ ð4�=3ÞðR=��3Þð	=ð1þ 	2Þ3=2Þ,

 ¼ ð4�=3ÞðR=��3Þð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	2
p Þ and 	 ¼ v?=vdr, with

vdr ¼ �v2
k=!cR, and!c is the electron cyclotron frequency.

The expression (8) is valid forvk � v?, 
 � 1 and� � 1,
which is expected to be satisfied in the case of the runaway
positron population. The emission is mainly in the forward
direction with an opening angle � ¼ 1=�. For one positron,
with Lorentz factor �þ ¼ 10 and v?=vk ¼ 0:1, the maxi-

mum of the radiation spectrum is around 100 �m, but the
velocity-integrated synchrotron spectrum for a beamlike
distribution has a maximum at a lower wavelength, around
1 �m. Figure 4 shows the synchrotron radiation spectrum
and its sensitivity to the major radius, electron density,
effective charge, magnetic field, Coulomb logarithm, and
parallel electric field. The radiation spectrum is calculated
by assuming an avalanching distribution in the form of the
runaway electron distribution in Eq. (3), and integrating
Eq. (8) in velocity space. The parameters (given in the
caption of Fig. 4) are taken from a typical medium-sized
tokamak disruption [16]. In most cases, the maximum of the
synchrotron radiation spectrum is around 1 �m, but the
absolute magnitude is larger in plasmas with a large number
of impurities, highmagnetic field, high temperature (through
the Coulomb logarithm, see Fig. 4(e)), and lower parallel
electric field. The dependence on the parallel electric field
may be somewhat counter-intuitive, because more runaways
will be produced for high electric fields. However, these
runaways will have lower perpendicular momenta, with a
corresponding lower synchrotron radiation power. The total
radiated power for the parameters used here is only around
0.2 W, but it should be multiplied byMp to account also for

positrons produced in collisions with impurities and thermal
electrons. Since the radiated power and the spectrum shape
are sensitive to the impurity concentration, temperature, and
other parameters, detection of positrons should give valuable
information about these.

In thunderstorms, positrons that are accelerated by the
electric field can produce new runaway electrons via
scattering with electrons, which produces secondary
avalanches. These secondary avalanches can in turn emit
x rays that Compton scatter or give rise to pair production,
resulting inmore feedback andmore avalanches. It has been
shown that the feedback production of runaways by posi-
trons (which were created by the runaway electrons in the
first place) is important in lightning initiation [14,15]. In

tokamak disruptions, the feedback of positrons should be
negligible, since the number of positrons is many orders of
magnitude lower than the number of runaway electrons.
Conclusion.—Almost all the positrons generated by ava-

lanching runaways will run away and are expected to have
lifetimes of several seconds. For an avalanching positron
distribution typical of tokamak plasmas, the maximum of
the synchrotron radiation spectrum should be around a
micron. The radiated power is sensitive to many plasma
parameters, especially the number of impurities, tempera-
ture, and density. Positron radiation measurements, along
with other diagnostics, could become a tool to better under-
stand plasmas containing runaway electrons. These plas-
mas usually are characterized by sudden cooling and
various instabilities, and they are notoriously hard to diag-
nose. Dedicated measurements of positron radiation may
therefore lead to important new insights into the processes
that are particular for these plasmas. Although the results
of this Letter are mostly relevant for fusion plasmas, the
method to determine the source of positrons, their distri-
bution, and the radiation emitted by them can be general-
ized by changing the parameters and the distribution
function of runaways.
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