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Instantaneous Normal Mode Analysis of Melting of Finite Dust Clusters
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The experimental melting transition of finite two-dimensional dust clusters in a dusty plasma is
analyzed using the method of instantaneous normal modes. In the experiment, dust clusters are heated
in a thermodynamic equilibrium from a solid to a liquid state using a four-axis laser manipulation system.
The fluid properties of the dust cluster, such as the diffusion constant, are measured from the instantaneous
normal mode analysis. Thereby, the phase transition of these finite clusters is approached from the liquid
phase. From the diffusion constants, unique melting temperatures have been assigned to dust clusters of
various sizes that very well reflect their dynamical stability properties.
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Phase transitions in finite systems (“‘clusters’) generally
differ from those of bulk matter. Nevertheless, solid and
liquid ““phases” in finite systems can be successfully iden-
tified analogously to bulk matter [1]. Hence, the under-
standing of melting transitions in such finite clusters allows
an insight into bulk phase transitions or the behavior of
finite systems in general. A paradigm for finite systems are
clusters of trapped charged particles, such as ions in traps
[2], electrons on liquid helium [3], electrons in quantum
dots [4], or charged microspheres in a plasma discharge:
so-called dust clusters [5-8].

The thermodynamic quantities of finite clusters (e.g.,
specific heat) do not show sharp transitions [9], which
makes it difficult to distinguish a solid from a liquid phase.
However, upon heating, Lindemann-like fluctuations of the
particles around their equilibrium position start to grow
[10-15] until the ordered arrangement of particles in the
cluster is lost. In finite two-dimensional (2D) systems, the
loss of order occurs in two steps starting with a loss of
orientational correlation and followed by a loss of radial
correlation. Attempts have been made to assign criteria for
the melting point from the particle configurations and their
fluctuations [10,16]. In all these approaches, the phase
transition is assigned to a loss of structural properties of
an ordered particle arrangement.

In contrast, it might be advantageous to judge the system
from the liquidlike side of the transition. A phase transition
to the solid phase may then be assigned when the liquid
properties are lost. For that purpose, the method of instan-
taneous normal mode (INM) analysis provides an interest-
ing description of the liquid behavior [17-21] especially
for the case of supercooled liquids or liquids near freezing.
For extended liquids, the INM analysis has been used to
derive diffusion constants or solvation properties.

In this INM analysis, the frequencies of the instanta-
neous normal modes w,, are obtained from the eigenvalues
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of the dynamical matrix at any instant of time, which are
either real or imaginary. The resulting density of states

plw) = (T o~ w,) (1)

is the averaged distribution of the normal mode frequencies
with the normalization [ dwp(w) = 1. The total density of
states can be split into the stable part p (w) with real w,
and the unstable part p,(w) with imaginary w,. In an
instantaneous energy landscape of the liquid, real values
of w, belong to potential wells in which the particles of the
liquid can oscillate around their current equilibrium in the
cage of the nearest neighbors. Imaginary values of w,
represent the potential hills that separate the minima.
Now, especially the unstable part p,(w) provides detailed
information of the liquid behavior since the the thermal
energy drives configurational transitions to take place over
these potential hills. The unstable part of the density of
states is closely related to liquid properties, such as the
diffusion constant D. This can be understood because the
crossing over the potential barriers characterizes the tran-
sient behavior of the liquid.

In this Letter, we will determine the phase transitions of
a large number of charged-particle clusters in a dusty
plasma, which are thermodynamically heated by lasers.
We adapt the INM analysis to finite dust clusters to derive
liquid transport constants, such as the diffusion constant.
From the diffusion constants, the solid-liquid phase tran-
sition is approached from the liquid side, and freezing
temperatures are derived and compared to the stability
properties of the cluster arrangements.

The experiments have been performed in a dusty plasma
where plastic microspheres are trapped in a gaseous dis-
charge plasma (see Refs. [5,6,8,22,23]). The plasma was
ignited in argon at a gas pressure of 7 Pa using a radio-
frequency discharge (frp = 13.56 MHz) at a power of
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3 W. In this plasma, a small number N of microspheres was
trapped to form two-dimensional finite dust clusters. The
microspheres were 12.26 um melamine-formaldehyde
grains with a mass of m = 1.5 X 1072 kg. The spheres
attained a negative charge of Z = 21900 = 2000 elemen-
tary charges due to the continuous inflow of plasma elec-
trons and ions. Vertically, the particles are trapped in a
monolayer due to the strong confinement provided by
gravity and electric fields in the space charge sheath. For
horizontal confinement, the electrode has a very shallow
spherical depression. The likewise curved equipotential
planes trap the microspheres horizontally in a harmonic
confinement of trap frequency wy, = 6.4 + 1.0 s, The
particle motion is recorded with high-resolution CCD
cameras at a frame rate of 60 frames/s which is decisively
faster than the typical plasma (Debye) frequency of
the cluster w,q = (Z2e*/(meymb?))V/2 = 15 s~! with the
elementary charge e, the dielectric constant €,, and the
interparticle distance » = 1.1 mm.

The dust clusters are heated by an in-plane four-axis
laser system [24] where the laser beams randomly ‘kick™
the microspheres on both horizontal axes in both directions
by radiation pressure forces. The random process of laser
“kicks” is chosen in such a way that the kinetic energies of
the microspheres are isotropic with a nearly Maxwellian
velocity distribution. Hence, the particles gain a tempera-
ture 7 in a true thermodynamic sense [24].

The experiments shown here have been performed on
dust clusters with N = 19-50 particles. Here, 10-20 runs
at different temperatures have been realized for each clus-
ter. Each run covers an observation time of 250 s (corre-
sponding to 15 000 frames), which is long enough to allow
for a large number of slow configurational changes in
the liquid phase. As an example, Fig. 1 shows the trajecto-
ries of the particles in the N = 19 dust cluster for three
different heating temperatures. Together with the trajecto-
ries, the INM density of states p is shown for these
temperatures.

To calculate the INM, the instantaneous experimental
positions of the particles in each frame have been used. For
the dynamical matrix the particles are, as in the experi-
ment, assumed to be trapped in a harmonic 2D confinement
potential and to interact via a shielded Yukawa (Debye)
potential. The dynamical matrix is fully determined
by a single experiment parameter: the screening strength
k = ry/Ap defined as the spatial scaling ry=
(27%¢%/(4megm®?))'/? in units of the shielding (Debye)
length Ap [15]. Here, a fixed value of x = 1 has been
used as determined from previous experiments [7,23].
The 2N eigenfrequencies (either real or imaginary) in all
the 15 000 frames then constitute the density of states p.

It is seen from the trajectories that the cluster develops
from an unordered arrangement (‘‘liquid state’’) at the
high temperature, where frequent intershell transitions
occur, to an ordered arrangement (“‘solid state’) at low
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FIG. 1 (color online). Density of states p of the dust cluster
with N = 19 at three different temperatures achieved by laser
heating. The different curves are vertically shifted by 0.5 for
clarity. As usual, the unstable part p,(w) with the imaginary
eigenfrequencies is plotted as p,(|w|) on the negative frequency
axis. Corresponding trajectories of the cluster particles over
250 s are also shown.

temperature. At the medium temperature the excursions of
the innershell particles start to overlap, indicating the onset
of loss of angular order, and a few intershell transitions are
recognized.

The density of states reflects this behavior. For the low-
est temperature, p shows a very peaked structure, indicat-
ing that only certain modes at specific frequencies can
occur in this ordered state. This state density very much
resembles that found for the solid ground state [25,26]
except for the small unstable part. For higher temperatures,
a more continuous mode spectrum p(w) is found, reflect-
ing the disordered arrangement. As mentioned above, es-
pecially the unstable part of the state density p, reflects the
liquid behavior. The unstable part (plotted here, as usual,
on the negative frequency axis) becomes much broader
with increasing temperature. Also, the fraction of unstable
modes compared to the total density increases from about
2% at T = 1600 K to about 8% at T = 43240 K. These
findings already qualitatively demonstrate the change from
a solidlike to a liquidlike cluster.

Now, to quantitatively address the liquid state of these
clusters, liquid transport properties are determined from
the INM modes. As the most important transport coeffi-
cient in a liquid, the diffusion constant D is presented here.
The diffusion constant is derived from the relation [18,20]

kBT Th
D=—|d —5 > 2
m _[ wp(@) 1+ T%wz @

where 7, is the average waiting time that is associated with
the transition across potential barriers to other local min-
ima in the momentary many-body potential surface of the
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liquid (see also [27]). Following the method of
Vijayadamodar and Nitzan [20], the corresponding hop-
ping frequency 7, ! is given by

2
= cfdwp(w)%Aexp(—BZ)—), 3)

where ¢ = 3 is associated with the different possibilities of
escape routes from a potential minimum [28]. The parame-
ters A and B are obtained, with an error of about 2%, from
fitting p,(|w|)/p,(w) to the function Aexp(—Bw?/kT).
As shown in the inset of Fig. 2, this functional form very
well fits the behavior of p,(|wl|)/p(w) from the experi-
ment at all temperatures except the very lowest, where we
expect the cluster to be in the solid state. These fits are
given for the N = 19 cluster close to the freezing point
(T = 6700 K) and in the liquid regime (7 = 14 590 K and
43 240 K, respectively).

The so-determined diffusion constants are shown in
Fig. 2 for the 19- and 20-particle cluster as a function of
cluster temperature. It is seen that the diffusion constant
increases roughly linearly for both clusters above a thresh-
old temperature. The diffusion constant takes values up to
D =6Xx10"° m?/s. For extended 2D systems under
similar conditions, values in the range D =
107°-10"7 m?/s [29-31] were reported. These values
are in the range of those we find here for our finite systems,
and especially the diffusion constants given by Vaulina
et al. [29] match our results very well.

It is seen that the same magnitude of the diffusion
constant is reached for the 19-particle clusters at higher
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FIG. 2 (color online). Diffusion constant D as a function of
cluster temperature for both the N = 19 (circles) and N = 20
(squares) particle clusters calculated from INM. The symbol size
approximately corresponds to the errors in D (for fixed c). The
dashed lines indicate a linear fit to the INM data to determine the
melting temperature. The inset shows the ratio p,(|w|)/p,(w) as
a function of w? for N = 19 together with the best exponential
fit.

temperatures. This reflects the higher stability of this clus-
ter compared to the 20-particle cluster. The 19-particle
cluster has a ground state configuration (1,6,12) with 1
particle in the center, 6 in the inner ring, and 12 in the outer.
This is a ““magic number” configuration due to the com-
mensurate number of particles in the inner and outer ring
with a high structural and dynamical stability. In the ex-
periment, at the very low temperatures the 19-particle
cluster happened to be in a metastable (1,7,11) configura-
tion that has a low structural and dynamical stability due to
the incommensurate particle numbers. However, upon la-
ser heating the cluster “snapped’ back into the more stable
(1,6,12) configuration (see structures in Fig. 1). The
20-particle cluster has throughout a (1,7,12) configuration
with incommensurate particle numbers and, hence, very
low stability [6,23,25].

It should be noted that the hopping frequencies deter-
mined in this calculation are of the order of 7, ! = 0.1 Hz
for N =19 and 7;, ! = 1.5 Hz for N = 20 at the highest
temperatures. This is of the order of the frequency of inter-
shell transitions seen in the trajectories (compare Fig. 1).

It is now very tempting to extrapolate the diffusion
constants acquired by INM to D — 0 to identify the freez-
ing point, thereby assuming that in the solid regime the
diffusion constant is much smaller than in the liquid.
Hence, the freezing transition temperature is approached
from the liquid phase of the cluster, here. In doing so [32],
we find T, = 1650 =550 K for N =20 and T) =
6700 £ 2200 K for N =19, again reflecting the higher
stability of the 19-particle cluster.

The so-determined melting temperature lies, for the
N = 19 cluster, in a range where quite noticeable angular
excursions of the particles are seen but where no angular
transitions occur yet (compare Fig. 1). For the N = 20
cluster the melting temperature is found where angular
transitions just have started to occur. Hence, the INM
analysis of the liquid properties of finite charged-particle
clusters seems to relate the solid-liquid phase transition to
the loss of angular order of these clusters.

We have repeated these heating experiments and the
INM analysis for a large number of clusters with different
particle numbers between N = 19 and N = 50. In each
case the diffusion constants as a function of temperature
are determined, and then the melting temperatures are
derived by extrapolating to D — 0. The so-determined
melting temperatures are shown in Fig. 3. It is seen that
the melting temperature decisively depends on the exact
particle number. A big variation of melting temperature is
seen for the most prominent pair of N = 19 and 20, as
discussed above. Relatively high melting temperatures
are found for N =22, 25, and 29 and relatively low
temperatures for N = 21, 23, and 26. The Coulomb cou-
pling parameter at melting I'y, = Z%e*/(4meybkpT),)
ranges from Iy, = 900 (for N = 21) to I'y, = 5500 (for
N =19). Values in this range might be expected
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FIG. 3 (color online). Melting temperature (circles) as a func-
tion of cluster size, i.e., particle number N. For comparison, the
frequency of the lowest frequency mode is shown (squares, data
from [25]).

when taking into account finite size effects [9] and
screening [33].

The assignment of a single freezing temperature cer-
tainly is to be taken with care since the melting usually is a
two-step process (angular and radial melting) and might
also differ between the different shells of the cluster
[10,25]. Hence, to judge the quality of the above-described
freezing temperature, we compare with stability criteria
obtained from simulations in Ref. [25]. These authors have
shown that the mode with the lowest eigenfrequency de-
termines the stability of the cluster. For small clusters, this
lowest-frequency mode usually corresponds to intershell
rotation, for larger to vortex-antivortex motion. Here, the
frequency of the lowest-frequency mode w,;, is given in
comparison to the melting temperatures in Fig. 3.

It is seen that the melting temperature derived from the
INM diffusion constants qualitatively matches the behav-
ior of the minimum excitation frequency w,,;,. The high
freezing temperature of the N = 19 cluster goes along with
a high excitation frequency and, hence, a high stability
against perturbations. In the same way, the N = 20 system
has a low freezing temperature and a low excitation fre-
quency. Our freezing temperatures obtained from INM
correlate well with the minimum excitation frequency for
all particle numbers. For larger clusters, N = 34 and 50;
however, the correspondence is not as close as for the
smaller clusters. This is due to the fact that the configura-
tion realized in the experiment does not correspond to the
ground-state configuration of the simulation with pure
Coulomb interaction. Consequently, also the minimum
excitation frequency from the simulation will not exactly
correspond to the experimental situation. Nevertheless, the
freezing temperatures determined here are very well re-
lated to the minimum excitation frequencies.

In conclusion, our controlled laser-heating experiments
together with the described analysis opens up new

possibilities to study the fluid properties of charged-
particle clusters in terms of reliable diffusion constants,
hopping rates, and melting temperatures. These now allow
us to address the solid-fluid phase transition from the fluid
state and to determine the point where the liquid properties
are lost. This is complementary to the usual approach
where one is interested in identifying the loss of order.
Another advantage of INM lies in the fact that all 2N
eigenfrequencies w, in each time step enter the analysis
whereas in other methods, e.g., using distance fluctuations
[16], only a single parameter is calculated from the con-
figuration in each time step, thus requiring a much longer
time series for the same statistics. Hence, this method is
capable to determine the stability of finite clusters from
experiments, allowing us to reveal detailed insight into the
phase transition behavior of finite systems and to character-
ize fluid finite systems.
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