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The effect of turbulent clustering of water droplets on radiative transfer is investigated by means of both

a three-dimensional direct numerical simulation of particle-laden homogeneous isotropic turbulence and a

radiative transfer simulation based on a Monte Carlo photon tracing method. The results show that

turbulent clustering causes the formation of void regions of droplets and hence increases the direct

transmittance. This effect decreases as the turbulent Reynolds number increases and is estimated to be

negligibly small under the conditions in real clouds.
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Clouds play an important role for the radiative heat
budget on Earth. For reliable predictions of climate
change, cloud radiation must be evaluated accurately.
However, we still have many uncertainties about cloud
radiation processes. For example, the effect of turbulence
on cloud radiation has not been well understood.

Cloud turbulence forms an inhomogeneous distribution
of water droplets, often referred to as turbulent clustering
or preferential concentration [1–3]. Mishchenko [4] inves-
tigated the effect of centimeter-scale inhomogeneity of
spatial distribution of cloud droplets in a 10-meter-scale
cloud volume. His probabilistic theory estimated that the
small-scale inhomogeneity does not affect radiative scat-
tering. This suggests that the radiative transfer process
follows the conventional exponential extinction law, which
is called the Beer-Lambert law. The effect on extinction
was investigated by Kostinski [5,6]. He showed that the
radiative transfer process does not follow the Beer-
Lambert law in a medium with spatially correlated parti-
cles. Borovoi [7] further showed that the Beer-Lambert law
is applicable only to the medium with small-scale inhomo-
geneity, but not to the one with large-scale inhomogeneity.
All their conclusions were, however, based on estimates of
the particle distributions with specific spatial correlations
without detailed discussions. Therefore, the effect of in-
homogeneity due to turbulence on radiative transfer is still
unclear.

This study, therefore, aims to investigate the effect of
inhomogeneity on radiative properties based on the particle
distributions obtained from physics-based simulations.
Direct numerical simulations (DNS) of three-dimensional
particle-laden homogeneous isotropic turbulence were per-
formed to obtain realistic spatial distributions of droplets in
turbulence. Then, the radiative properties of the obtained
media with clustering droplets were calculated based on a
Monte Carlo photon tracing method.

The governing equations of air turbulence in the DNS
are the continuity and incompressible Navier-Stokes

equations. The fourth-order central finite-difference was
used for advection [8] and viscous terms. The second-order
Runge-Kutta method was used for time evolution. Steady
turbulence was formed by applying the external force
which keeps the intensity of a large-scale eddy. The
reduced-communication forcing [9], which can suppress
the computational cost arising from the domain decompo-
sition for parallel computing, was used for the external
forcing.
The droplet motions were calculated by the Lagrangian

tracking method [10,11]. The governing equation of the

motion is dvi

dt ¼ �ðvi � uiÞ=Tp, where ui is the fluid ve-

locity, vi the droplet velocity, and Tp the droplet relaxation

time. Droplets were assumed as Stokes particles, whose
relaxation time Tp is given as Tp ¼ ð�p=�gÞð2r2=9�Þ,
where r is the droplet radius, �p the water density, �g the

air density, and � the kinematic viscosity.
Isotropic air turbulence and droplet motions were simu-

lated in a cubic domain of length 2�L0, where L0 is the
representative length scale. Periodic boundary conditions
were applied in all three directions.
This study performed two air flow simulations. Table I

lists the computational conditions and flow properties in-
cluding the rms value of velocity fluctuation u0, the
Kolmogorov length scale l�, and the turbulent Reynolds

number based on the Taylor microscale Re�. The numbers
of grid points were set to 643 in a low Reynolds number
case or 10003 in a high Reynolds number case. In both
cases, the droplets were distributed randomly in the do-
main after the turbulence was fully developed. The droplet
radius was set to 20 �m so that the Stokes number St

TABLE I. Numerical conditions and flow properties.

L0 [m] u0 [m=s] l� [10�4 m] Re� [� ]

Low Re� 0.0050 0.20 2.69 54.3

High Re� 0.0659 0.50 2.73 340
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(¼ Tp=T�, where T� is the Kolmogorov time scale) was

close to unity. St of cloud droplets typically ranges from
10�3 to 10�1 [12], but St of large droplets reaches as much
as 10. Since turbulent clustering becomes the most pro-
nounced when St� 1, this study employs St ¼ 1 to evalu-
ate the maximum effect of turbulent clustering. The
maximum number of droplets was 50� 106 in the high
Reynolds number case. In the DNS, collisions between
droplets were neglected to reduce the computational cost.
In order to avoid the reduction of the volume fraction of
droplets due to their overlapping, the overlapping droplets
were shifted so that the minimum distance between the
droplets is 2r.

The radiative transfer properties for the media with
clustering droplets were obtained by using a Monte Carlo
photon tracing method, where transports of a number of
photons were traced stochastically. In the conventional
Monte Carlo photon tracing method [13], a free path length
of a photon is determined stochastically by the Beer-
Lambert law. On the other hand, in our Monte Carlo photon
tracing method, geometrical collisions between photons
and individual droplets were taken into account. A photon
was assumed to collide with a droplet closest to the
photon among droplets which satisfy the following criteria:

jðxp � x0Þ � k̂j< rext and ðxp � x0Þ � k̂> 0. Here, x0

and xp are the positions of the photon and droplet. k̂ is

the unit traveling direction vector of photon. rext is the

droplet extinction radius, which we defined as rext ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ext=�
p

, where �ext is the extinction cross section.
Absorption by droplets was taken into account by using

a weight wðmÞ proportional to the radiative power of each
photon, where the superscript ðmÞ indicates the order of
collision. On a collision of order mþ 1, the weight was

scaled as wðmþ1Þ ¼ !wðmÞ, and the photon was scattered

with the weight wðmþ1Þ. Here, ! is the single scattering
albedo of the droplet, which is defined as the ratio of the
scattering cross section �scat to the extinction cross section
�ext. The direction of the scattered photon was determined
by the scattering angle � and azimuth angle 	. � was

chosen based on the scattering phase function pð�Þ,
whereas 	 was chosen randomly.
Photons were radiated downward (� y direction) from

random positions on the top boundary of the computational
domain. Periodic boundary conditions for photon move-
ment were applied in x and z directions. The photons were
traced until they left the domain from the top or bottom

boundary, or their weights wðmÞ became smaller than 10�9

due to the absorption.
In this study, radiative transfer was calculated for the

wavelengths of � ¼ 0:5 �m and 3:0 �m. The former is a
visible radiation, which is not absorbed by droplets,
whereas the latter is an infrared radiation, which is partially
absorbed by droplets. The extinction cross section �ext,
single scattering albedo !, and scattering phase function
pð�Þ for these wavelengths were obtained from the Mie
scattering theory [14]. The values of �ext and! for a water
droplet of r ¼ 20 �m are 2:03�r2 and 1.00 for the wave-
length of � ¼ 0:5 �m, whereas 2:15�r2 and 0.53 for the
wavelength of � ¼ 3:0 �m. Absorption by gases was
ignored for simplicity since the volume absorption coeffi-
cient of gases was much smaller than that of droplet
medium in most of the cases. For reference, radiative
transfer was also simulated for random dispersion of
droplets.
Figure 1 shows the randomly dispersed droplets, and the

clusterings for the low and high Reynolds number turbu-
lence. The domain size and number density of the distri-
bution of randomly dispersed droplets are the same as the
low Reynolds number case. Turbulent clustering is clearly
observed in the distributions obtained from DNS, whereas
it is not observed in the random case. In order to compare
quantitatively the scales of clusters, the pair correlation
function (PCF) hðlÞ of the clustering droplets was
calculated. The PCF corresponds to the spatial correlation
of number density fluctuation at the separation l, and
is defined as hðlÞ ¼ h½np;localðxÞ � np�½np;localðxþ lÞ �
np�i=n2p, where np is the mean droplet number density,

np;localðxÞ is the local number density, and hi indicates the
ensemble average. Figure 2 shows the PCF of the spatial

FIG. 1. Droplet distributions for (a) the random case, (b) Re� ¼ 54:3, and (c) Re� ¼ 340. Droplets within the range of 0< z < 4l�
are drawn.
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distributions for the low and high Reynolds number cases.
The PCF of randomly dispersed droplets is 0 in the whole
range of l=l�. It is observed that the PCFs for the both cases

are large at l=l� < 10, which indicates that the turbulent

clustering are significant in the small scale. The two PCFs
are identical in this scale. On the other hand, in the larger
scale, the PCFs for the high and low Reynolds number
cases are different from each other. This indicates that the
droplet distributions are inhomogeneous even in the iner-
tial range, and there is a difference in the inhomogeneity
between the high and low Reynolds number cases.

The radiative properties, which include the transmit-
tance T , reflectance R, and absorptance by droplets Ap

were evaluated in the radiative transfer simulations. These
radiative properties satisfy T þRþAp ¼ 1. Basically,

the radiative properties of a medium with randomly dis-
persed droplets are determined by thewavelength � and the
optical depth 
, which is given by 
 ¼ �extnp�y, where

�y is the depth of the cloud. In this simulation, �y is equal
to the depth of computational domain, that is �y ¼ 2�L0.

Table II shows the transmittance T , reflectance R, and
absorptance Ap for visible radiation (� ¼ 0:5 �m) at the

optical depth of 
 ¼ 0:744 and those for infrared radiation
(� ¼ 3:0 �m) at 
 ¼ 0:785. As mentioned before, visible
radiation is not absorbed by droplets. In the case of visible
radiation, T and R of the clustering droplets are almost

the same as those of the randomly dispersed droplets for
both low and high Reynolds number cases. On the other
hand, in the case of infrared radiation, T of the clustering
droplets is larger than that of the randomly dispersed
droplets, and R of the clustering droplets is smaller than
that of the randomly dispersed droplets. In addition,Ap of

the clustering droplets is smaller than that of the randomly
dispersed droplets. These differences are smaller in the
high Reynolds number case than in the low Reynolds
number case.
The differences are attributed to the change in the rela-

tion between the transmission and scattering. The trans-
mittance T consists of diffuse transmittance T diffuse and
direct transmittance T direct. T diffuse and T direct are the
portions of the radiation passing through the medium
with and without being scattered, respectively. Figure 3
shows the direct transmittance T direct of infrared radiation
of the media with clustering droplets for several values of
optical depth 
, which were set by changing the droplet
number density np. The solid line indicates the direct

transmittance ðT directÞrandom for randomly dispersed drop-
lets. It is given theoretically by the Beer-Lambert law,
which is expressed as ðT directÞrandom ¼ expð�
Þ. T direct

in the low Reynolds number case is found to be larger
than ðT directÞrandom obtained from the Beer-Lambert law.
This result indicates that the clustering increases the num-
ber of photons which pass through without being scattered.
This is due to the void regions in the clustering distribution,
as observed in Fig. 1. The increase of the photons trans-
mitting without being scattered enhances T , and the de-
crease of the photons colliding with droplets suppressesR
and Ap. On the other hand, T direct in the high Reynolds

number case almost corresponds to the Beer-Lambert law.
The difference between the high and low Reynolds number
cases is due to the difference in relative scale of cluster to
the domain. Since 
 is determined by the depth of domain
2�L0, the mean free paths of photons relative to the
domain size are comparable with each other in the media

FIG. 2. Pair correlation function (PCF) of turbulent clustering
droplets.

FIG. 3. Comparison of direct transmittance of the media with
clustering droplets and that obtained from the Beer-Lambert law
for infrared radiation.

TABLE II. Radiative properties of the media with clustering
droplets and with randomly dispersed droplets for visible radia-
tion (� ¼ 0:5 �m) and infrared radiation (� ¼ 3:0 �m).

T R Ap

� ¼ 0:5 �m Random case 0.973 2:66� 10�2 0.00

Re� ¼ 54:3 0.973 2:65� 10�2 0.00

Re� ¼ 340 0.973 2:65� 10�2 0.00

� ¼ 3:0 �m Random case 0.684 3:85� 10�3 0.312

Re� ¼ 54:3 0.699 3:53� 10�3 0.297

Re� ¼ 340 0.686 3:81� 10�3 0.311
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with the same 
. Therefore, the cluster scale relative to the
mean free path (MFP) of photons decreases as Re�
increases. This is why the effect of clustering on radiative
transfer weakens as Re� increases.

In order to discuss the effect of turbulent clustering on
real clouds, it is necessary to consider the scale difference
between our simulation and real clouds. The geometric
depth of real clouds ranges from 102 to 104 m [15,16],
which is much larger than the domain size of our simula-
tions. Furthermore, it is not feasible to perform the DNS in
the domain size comparable to real clouds. Therefore, it is
required to develop a model to estimate the effect of
clustering on cloud radiation. In this study, we modified
the Beer-Lambert law by defining a correction coefficient
Ccluster as ðT directÞcluster ¼ expð�Ccluster
Þ. Ccluster corre-
sponds to the ratio of effective optical depth to the optical
depth 
 in the random case, which was intensely discussed
by, e.g., Davis et al. [17], Cairns et al. [18], and Petty [19].
For example, Petty [19] proposed the independently scat-
tering cloudlet (ISC) model. The ISC model treats an
inhomogeneous cloud distribution as a random ensemble
of independently scattering discrete cloudlets, which are
modeled as homogeneous spheres. According to the ISC
model, Ccluster is parametrized by the optical diameter 
0 of
the cloudlet, which is defined as the ratio of cloudlet
diameter to the mean free path of photons in the cloudlet.
Figure 4 shows the correction coefficient Ccluster versus the
ratio of the Kolmogorov length scale l� to the mean free

path of photons in a medium with randomly dispersed
droplets, lMFP¼ð�extnpÞ�1. Ccluster obtained from the

low and high Reynolds number cases are plotted
with that obtained from the ISC model by assuming

0 ¼ ðnp;cluster=npÞðl�=lMFPÞ� ½hðl�Þþ1�ðl�=lMFPÞ, where

np;cluster is the local droplet number density in clusters.

Ccluster obtained from our simulations are observed to be
smaller than unity, which corresponds to the increase of
T direct in Fig. 3. The value of Ccluster estimated by the ISC
model is much closer to unity than that from our simula-
tions. Thus, the ISC model does not represent the effect of

turbulent clustering on radiative transfer. In real clouds, the
mean free path lMFP is in the range from 10�3 to 100 m
since the number density np is within the range from 107 to

109 m�3 [20], and the typical droplet radius is 10 �m [20].
On the other hand, the typical Kolmogorov length scale l�
is 1 mm [12]. Therefore, l�=lMFP in real clouds is in the

range from 10�6 to 10�3. In this range of l�=lMFP, the

correction coefficient Ccluster for St ¼ 1 is larger than 0.98.
Therefore, the effect of turbulent clustering on cloud
radiation is estimated to be negligibly small as anticipated
by Mishchenko [4].
This study employed monodispersed spherical water

droplets with St ¼ 1. As the clustering being the most
pronounced for St� 1, the effect of clustering is smaller
in real clouds, which contain droplets with various values
of the Stokes number. It should be noted that clouds often
contain ice particles. Ice particles usually have complex
geometry, which adds randomness to particle motions. The
additive randomness decreases the effect of turbulent
clustering. Thus, this study has discussed the maximum
possible effect of turbulent clustering in clouds by per-
forming the physics-based simulations and revealed that
the effect is negligibly small.
This research was supported by Grant-in-Aid for Young

Scientists (A) (No. 20686015) and by Grant-in-Aid for
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