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We develop a set of laser rate equations that accurately describes mechanical amplification in

optomechanical oscillators driven by photothermal or radiation pressure forces. In the process we

introduce a set of parameters describing gain, stored energy, slope efficiency, and saturation power of

the mechanical laser. We identify the three-phonon parametric interactions as a microscopic mechanism

enabling self-oscillation. Our theory shows remarkable agreement with our experimental data, demon-

strating that optomechanical self-oscillation is essentially a ‘‘phonon lasing’’ process in which an optical

pump generates coherent acoustic phonons.
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Cavity optomechanics enables resonantly enhanced light
to exert forces on small mechanical objects with high
quality mechanical (acoustic) resonances [1–3]. If the me-
chanical object comprises the whole resonant cavity (as in
microdisks and toroids [4]) or a part of it (as in Fabry-Perot
cavities [5]), then a feedback backaction mechanism is
established that enables external optical control of both
frequency and amplitude of the mechanical oscillations.
The frequency and amplitude changes are usually achieved
by tuning the optical wavelength around the resonance, and,
from a practical point of view, the control of amplitude has
been the focus of attention of many groups. Reducing the
vibration amplitude of amechanicalmode can be thought of
as reducing its effective temperature, thereby making it a
highly sensitive detector of various external forces.

While most research has concentrated on achieving
optomechanical cooling [6–8], it has also been demon-
strated that by simply changing the sign of the detuning
(i.e., tuning the wavelength either red- or blueshifted com-
pared to the cavity optical resonance) an opposite effect
can be achieved. The resulting large increase in the ampli-
tude of mechanical oscillations with optical power is ac-
companied by the reduction of the linewidth of these
oscillations. It has also been shown in various optomechan-
ical schemes that beyond a certain threshold power self-
sustained mechanical oscillations materialize [9,10] lead-
ing a number of researchers to demonstrate mechanical or
phonon lasing [11,12]. However, explanations of above-
threshold optomechanical oscillation as phonon lasing
have not, until this Letter, described either the ‘‘gain’’ or
‘‘emission’’ in the context of energy balance. Lasing gen-
erally comprises an act of stimulated emission of coherent
bosons occurring in the gain medium and is typically
described by a set of two coupled rate (balance) equations:
one for the gain (or population inversion) and the other for
the bosons in the resonant mode [13–15]. Within this
model the onset of lasing is always characterized by the
twin telltale signs of rapid growth of oscillating power

combined with the collapse of the linewidth. While these
signs have been observed before for optomechanical oscil-
lators [5,7,9], they have not been explained in the frame-
work of balance equations and no customary laser terms,
such as gain, population inversion, saturation power and
slope efficiency have been formulated for optomechanical
oscillators.
In this Letter, we develop a set of mechanical laser rate

equations with identifiable parameters describing gain,
stored energy, slope efficiency, and saturation power. Our
theory shows remarkable agreement with our experimental
data in terms of power and linewidth, demonstrating that
optomechanical self-oscillation is essentially a ‘‘lasing’’
process in which an optical pump generates coherent
acoustic phonons. We consider a silicon-on-insulator
micro-optomechanical oscillator [16] consisting of a sus-
pended silicon microbridge that is clamped at both ends
[Fig. 1(a)]. The SiO2 layer has been etched from under-
neath the microbridge so that it is otherwise free to vibrate.
Perpendicular to and intersecting the microbridge is a rib

FIG. 1 (color online). (a) Fabricated device and schematic
showing micromechanical oscillator and optical Fabry-Perot
cavity (b) Measured device 1 displacement amplitude, zm, for
various optical powers, P0 ¼ 13 �W and P1 ¼ 206 �W. The
shaded curve is the calculated thermal noise spectrum. Above
threshold (Pin ¼ 2P1) the oscillation amplitude increases 20�
compared to below threshold (Pin ¼ P1).
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waveguide into which two sets of �=4 air trenches have
been etched. Each set of air trenches forms a high-
reflectivity (R> 98%) distributed Bragg reflector (DBR),
which together form a Fabry-Perot microcavity. One of
the DBR’s is fixed while the second is etched into the
center of the vibrating microbridge. Any in-plane micro-
bridge oscillation therefore modulates the position of the
second DBR and modulates the Fabry-Perot microcavity
transmittance.

We perform all our measurements with the laser wave-
length red-detuned with respect to the Fabry-Perot optical
resonance. In Fig. 1(b), we show several mechanical reso-
nance spectra measured in vacuum (P� 20 mTorr) using
the experimental setup described in [16]. At low optical
power (Pin ¼ 13 �W) the measured spectrum is just above
the calculated thermal noise floor indicating a minimal
optomechanical interaction. As we increase the power
(Pin ¼ 206 �W) the linewidth narrows and the amplitude
increases linearly. However, a further increase in optical
power (Pin ¼ 412 �W) leads to a strong nonlinear in-
crease in oscillation amplitude, indicating a threshold con-
dition. The accompanying frequency shift (�!) is the
result of radiation pressure [16] while the threshold condi-
tion is photothermal in nature as is explained below. The
simultaneous presence of photothermal and radiation pres-
sure forces acting in opposite directions at vastly different
time scales enables us to separate their effects in a straight-
forward manner [16] and we focus mainly on the photo-
thermal force here as it relates to the threshold condition.

We now derive a set of two optomechanical laser rate
equations. Since the ‘‘output power’’ of a mechanical laser
is related to the vibration amplitude and the gain to the
temperature rise, it is the equations for these two variables
that serve as a basis for our derivations. The position of the
beam has both steady-state and oscillating components,
z ¼ �z0 þ 1

2 zm expðj!tÞ þ c:c: where zm is the slow-

variable amplitude. A change in the optical cavity length
causes a change in the optical power at the DBR etched
into the microbridge. This power also has two components,
�P ¼ � �Pþ 1

2Pm expðj!tÞ þ c:c: which causes the tem-

perature to rise relative to the ambient temperature �T ¼
� �T þ 1

2Tm expðj!tÞ þ c:c:. The rise in the amplitude of

temperature oscillations is determined from dTm=dt ¼
�ðj!þ 1=�tÞTm þ �RtPm=�t where � is the total absorp-
tion in the beam, Rt is the thermal resistance and �t is the
thermal relaxation time. The relationship between Pm and
zm is determined by the derivative of the power inside the
cavity with respect to the change in optical length (that is,
the derivative of our cavity line shape). To maximize the
derivative, the laser wavelength must be shifted from the
resonance by a small amount, which for a Fabry-Perot
cavity with finesse F and Q-factor Qopt can be found as

�� � �=ð2 ffiffiffi
3

p
QoptÞ. This causes the second derivative to

vanish and only the first and third order derivatives may be
kept in a series expansion, with the values equal to

P0 ¼ z�1
1 Pin��ð3FÞ2=ð�nSi

ffiffiffi
3

p ÞT1=2
cav ��1Pin and P000 ¼

z�3
3 Pin��8ð3FÞ4=ð� ffiffiffi

3
p ÞT1=2

cav ��3n�3
Si Pin respectively,

where Tcav is the cavity transmission at resonance, nSi ¼
3:48 is the effective refractive index of the Siwaveguide, and
Pin is the waveguide optical power incident on the cavity.
One obtains Pm ¼ Pinðzm=z1Þð1� z2m=z

2
satÞ, where we have

introduced the saturation amplitude zsat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z33=z1

q
�

�nSi=3F. Assuming that the heating is nearly adiabatic,
i.e., d=dt � !0, �

�1
t , we obtain

dT0
mðtÞ
dt

þ T0
mðtÞ
�t

ð1þ!2�2t Þ ¼ 1

�t
�RtPinðtÞ zmz1

�
1� z2m

z2sat

�
;

dT00
mðtÞ
dt

þ T00
mðtÞ
�t

ð1þ!2�2t Þ ¼ �!�RtPinðtÞ zmz1
�
1� z2m

z2sat

�
;

(1)

for the real and imaginary (quadrature) components of
temperature. Details of the derivation are shown in the
Supplemental Material [17]. Now, the equilibrium position
of the beam, z0, is modified as the beam expands due to the
increase in temperature and can be written as z0 ¼ �z0þ
1
2 ð@z@TÞTm expðj!tÞ þ c:c, where ( @z

@T ) is a thermal-

displacement gain coefficient that relates the beam displace-
ment to changes in temperature via thermal expansion [16].
Inserting that into a damped mechanical oscillator equation
d2z=dt2 þ �dz=dt ¼ �!2

0½z� z0ðtÞ� yields for the slowly
variable amplitude of oscillations

dzm
dt

¼ ��

2
zm � j

2!

�
!2 �!2

0 �!2
0

dz

dT

T0
m

zm

�
zm

� 1

2!
!2

0

dz

dT

T00
m

zm
zm: (2)

The first term describes the damping, the term in parentheses
is the observed resonant frequency shift [16,18] that can be
also thought of as a frequency pulling in a conventional laser
theory ([13], Eq. 12.13), while the last term describes the
gain. Note that only the quadrature component of Tm con-
tributes to the gain, which is precisely the 90 degree phase
shift occurring in optical parametric oscillators [13]—an
analogy explored below. Finally, we obtain for the square
of the amplitude

dz2m
dt

¼ zm
dz	m
dt

þ z	m
dzm
dt

¼ ��z2m � 1

!
!2

0

dh

dT

T00

zm
z2m

¼ ½gðzmÞ � ��z2m; (3)

where we have introduced our gain (per unit of time) g ¼
�ð!2

0=!Þðdz=dTÞT00=zm. The rate equation for the gain is

then obtained from (1) as

dg

dt
þ g

�0t
¼ g0

�0t
ð1� z2m=z

2
satÞ; (4)

where the unsaturated gain is g0ðPinÞ ¼
�ðdz=dTÞRtPinðtÞz�1

1 !2�0t, and the modified thermal
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relaxation time is �0t ¼ �t=ð1þ!2�2t Þ. Equations (3) and (4)
represent our main result: a coupled set of equations for gain
and oscillating power in an optomechanical system.

Equations (3) and (4) and can be rewritten as a set of
standard laser rate equations (Eq. 13.43 in [13]) and to
better describe the energy balance. We introduce the en-
ergy of mechanical vibrations, Um ¼ 1

2m!2z2m, its satura-

tion value, Usat ¼ 1
2m!2z2sat, and another variable, the

stored energy of phase-locked thermal phonons that are
available for lasing Ust ¼ g�0tUsat, whose unsaturated
value isUst;0 ¼ g0�

0
tUsat. We also include the thermal noise

power PN ¼ �kT=2 in the equation to obtain

dUst

dt
¼ Ust;0

�0t

�
1� Um

Usat

�
�Ust

�0t
;

dUm

dt
¼

�
Ust

�0tUsat

� �

�
Um þ PN:

(5)

For the relatively weak vibrations zm � zsat the first of
Eqs. (5) can be approximated as

dUst

dt
¼ �pPin �Ust

�0t
�Ust

�0t
Um

Usat

; (6)

where we have introduced the pumping efficiency �p ¼
Ust;0

Pin�
0
t

¼ !T1=2
cav

2�
ffiffi
3

p �Rt
dz
dT Keff�nSi!�0t and Keff ¼ meff!

2
0 is the

effective spring coefficient. The stimulated emission term
UstUm=Usat�

0
t appears in both equations for stored and

released energies with opposite signs indicating perfect
energy balance as the energy is transferred from thermal
phonons in all acoustic modes into coherent phonons in a
single resonant mechanical mode. Also, note that neither
Ust;0 nor �p depend on cavity finesse, which is consistent

because they basically represent the area under the optical
force curve.

Next, we divide all the energies by a phonon energy @!
to obtain a standard set of Statz–de Mars [14,15] balance
equations

dNst

dt
¼ Nst;0

�0t
� Nst

�0t

�
1þ nm

Nsat

�
;

dnm
dt

¼
�

Nst

�0tNsat

� �

�
nm þ �

kT

2@!
;

(7)

with nm being the number of coherent phonons,Nst playing
the role of population inversion, and ð�0tNsatÞ�1 being the
equivalent of stimulated emission coefficient. One differ-
ence between the rate Eqs. (7) and the standard laser
equations is that the noise term is of a thermal nature and
thus appears to be classical. However, this is simply the
approximation of a fully quantum Bose-Einstein distribu-
tion term for the case of kT 
 @! and is not related to the
fact that our quanta are phonons and not photons.

We introduce the threshold value of stored energy,
Ust;th ¼ ��0tUsat, and the threshold pump power

Pth ¼ Ust;th=�p�
0
t � 0:62

QmF
2T1=2

cav

1þ!2�2t
!�t

�nSi
�ðdz=dTÞRt

;

(8)

where Qm is the Q factor of mechanical oscillation. Note
that using our theory, we could have considered the case
when the optical force is due to radiation pressure to obtain
a much higher value of the threshold,

Pth;rad � 0:62

QmF
2

1þ!2�2c
!�c

�nSicmeff!
2

� 0:62

QmQoptF
2
meffnSic

2!; (9)

because in place of the thermal time �t a much shorter
cavity lifetime �c �Qopt�=c would have been used, con-

sistent with [9].
To obtain input-output curves it is convenient to define

all the relevant energies and power as ust ¼ Ust=Ust;th,

um ¼ Um=Usat, and pin ¼ Pin=Pth to obtain dimensionless
laser equations identical to the ones in [14,15]:

dust
dt

¼ 1

�t
½pinð1� umÞ � ust� dumdt

¼ �ðust � 1Þum þ �
kT

2Usat

: (10)

Above threshold, the ‘‘population inversion’’ gets clamped
at a threshold ust ¼ 1 and the steady-state solution for
the energy of mechanical oscillation can be found as
um ¼ ðpin � 1Þ=pin with the term in the denominator in-
dicating the phenomenon of ‘‘gain compression’’ [19]. In
real units we obtain for the output power dissipated by the
mechanical beam and otherwise available to perform work
Pout ¼ �Um ¼ �pðPin=PthÞ�1ðPin � PthÞ with the slope

efficiency being equal to the pump efficiency modified
by the gain compression term ðPin=PthÞ�1. Using the sec-
ond equation in (10) we can write for the linewidth:

�eff ¼ �ð1� ustÞ �
��ð1� Pin=PthÞ Pin < Pth

�2 kT
2Pout

Pin > Pth

: (11)

We have performed lasing measurements for two de-
vices for comparison with our model. Device 1 (device 2)
has the following properties: !0=2� ¼ 101 kHz
(101 kHz), �=2� ¼ 5:54 Hz (3.98 Hz), Qm¼1:89�104,
(2:79� 104), F ¼ 140 (380), Tcav ¼ 4:7% (4.1%), z�1

1 ¼
1:6=nm, (7:7=nm), and zsat ¼ 12:9 nm (4.8 nm). The domi-
nant thermal time constant for these devices is estimated
(via finite-element structural-mechanical modeling) to be
3:0 �s (dominated by heat flow out of the DBR silicon
slabs) [16]. The corresponding expansion term was esti-
mated to be Rtðdz=dTÞ ¼ 18:3� 103 nm=W [16]. We use
a transfer matrix model to estimate the field penetration
and thereby absorption into the DBR slabs [16]. With the Si

PRL 108, 223904 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
1 JUNE 2012

223904-3



absorption coefficient equal to �Si ¼ 1:6 cm�1 we obtain
� � 3:2� 10�5 and find the threshold powers for our
two devices as 268 �W and 31:1 �W, respectively. We
use the calculated result for the spring constant
Keff ¼ 2:75� 10�9 N=nm to obtain saturation powers
Psat ¼ �Usat equal to 7.98 fW and 0.86 fW, respectively,
with slope efficiencies of 3:1� 10�11 and 3:6� 10�11,
respectively.

The results of our calculation are plotted in Fig. 2 with
no fitting parameters used, along with our experimental
results for device 1 and device 2.. Our instrument band-
width is 1 Hz, which is deconvolved from our measured
Lorentzian lines hapes. The experimental output powers
are found by first converting our measured output laser
oscillation amplitude into an oscillating displacement am-
plitude (zm as in Fig. 1(b)], which is then converted into a
mechanical power. The experimentally observed threshold
and linewidth are very well predicted by our theory in both
devices. In the lower finesse device 1, the experiment
shows earlier onset of saturation than theory, possibly
due to influence of the higher order terms in the Taylor
expansion of the photothermal force. In the higher finesse
device 2, the observed output power is larger than pre-
dicted, which can be explained by the fact that in a higher
Q cavity any small variation in laser wavelength can shift
the position of the ‘‘quiescent‘‘ point away from the one
used to minimize threshold and effectively increase the
saturation power, furthermore, the coupling efficiency can
vary between two devices by a small amount. Also, the
oscillations in our device do not show a complicated, often
multistable character observed in cantilevered designs
[10,20] but are much closer to the almost linear character-
istics of the phonon laser in [12]. This can be explained
by the fact that our cavity length is much shorter
(LC ¼ 3 �m) and we can keep the laser tuned to a single
quiescent point.

We now describe ‘‘phonon lasing’’ on a quantum
level. The majority of optomechanical oscillators in which
phonon lasing has been demonstrated are driven by radia-
tion pressure and can be explained in the framework of
Raman or Brillouin lasers: a parametric process in which
the stimulated decay of a higher frequency photon creates a
quantum of mechanical oscillation and a lower frequency
(Stokes) photon in the cavity. [7,12]. But the situation is far
more involved when the driving force is of a photothermal
nature [5,10] and the interaction is mediated by a sequence
of processes taking place inside the medium. The lasing
can occur with either a blue- or a redshifted pump (the
latter being the case in our experiments) a fact that cannot
be explained by conventional parametric and Raman-like
processes.
The parametric explanation can be obtained on the

microscopic level by noticing that the thermal expansion
driving the oscillating mechanical object is a consequence
of the anharmonicity of the binding forces in the crystalline
lattice. It is precisely this anharmonicity that engenders the
three-phonon quantum interactions, specifically the pro-
cess in which a higher-energy thermally excited acoustic
phonon !p can split into two lower energy phonons. Here,

one is the phonon of the mechanical oscillating mode with
frequency !0(‘‘signal’’ phonon), while the other one is the
thermal ‘‘idler’’ phonon with frequency!p �!0 as shown

in Fig. 3. The correspondence between the phonon anhar-
monicity and the second order optical nonlinearity is well
established [21]. Hence, one can think of the oscillations
as an ‘‘acoustic parametric oscillator’’. It is critical that the
‘‘pump’’ and idler phonons remain locked in phase with
each other for all phonon modes !p since the light inside

the optical cavity is modulated by the mechanical oscilla-
tions of one of the mirrors as cosð!0tÞ The number

FIG. 2 (color online). Comparison of experimental (points)
and theoretical (lines) results for two devices: (a) device 1 output
power and linewidth, (b) device 2 output power and linewidth.
The open data points in (a) correspond to the measured spectra
shown in Fig. 1(b).

FIG. 3 (color online). The lasing cycle in the photothermal
oscillator: the oscillating mechanical mode modulates the optical
power in the cavity and the temperature establishing a phase
coherence (!p and !p �!0) between some of the otherwise

thermally incoherent phonons. Coherent phonons at the differ-
ence frequency !0 are generated in the resonant mechanical
mode via anharmonicity.
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of photogenerated phonons is then modulated as
cosð!0tþ ’Þ, and this modulation can be interpreted as
interference between the phonons !p and phonon

sidebands !p �!0 whose phases are coherently related.

When ’ ¼ �=2, [strong quadrature component in Eq. (1)],
a buildup of coherent ‘‘signal‘‘ oscillations will result in a
manner similar to that of an optical parametric oscillator
[22]. There is no need for all the thermal phonons at
different frequencies!p to be coherent among themselves.

It is quite sufficient to have a relatively small fraction of
these phonons separated by the signal frequency !0 to be
locked in a phase relationship imposed by the oscillations
of optical power. It is the energy of these pairs, Ust that
plays the role of the energy stored at the upper level of the
conventional laser.

This analogy easily explains the reasons for a low effi-
ciency. First of all, only a small fraction of all the phonons
are the coherently locked ones. Second, in each three-
phonon process the average pump photon of THz frequency
creates less than a MHz frequency coherent phonon—es-
sentially a Manley-Rowe limit in nonlinear optics [22].

In conclusion, we have developed a set of phonon rate
equations to describe self-oscillation in optomechanical
systems. In analogy to the laser rate equations, our theory
predicts a threshold optical power resulting in a linewidth
narrowing and eventual linewidth collapse with a strong
linear increase in oscillation amplitude. The agreement
with experimental results (threshold power and slope effi-
ciency) is very good indicating that self-oscillation in
optomechanical systems can be described as a mechanical
lasing process in which a pump (optical input) generates
coherent acoustic phonons (mechanical output) via second
order nonlinear phonon interactions. The collapse of the
mechanical resonance linewidth and resulting strong in-
crease in the effective mechanicalQ factor is of interest for
sensing applications, where a large Qm leads to an in-
creased sensing resolution.
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