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Corrections of order �4
s for the axial singlet contributions for the decay rate of the Z boson into hadrons

are evaluated in the limit of the heavy top quark mass. Combined with recently finished Oð�4
s Þ

calculations of the nonsinglet corrections, the new results directly lead us to the first complete Oð�4
sÞ

prediction for the total hadronic decay rate of the Z boson. The new Oð�4
s Þ term in Z-decay rate leads to a

significant stabilization of the perturbative series, to a reduction of the theory uncertainty in the strong

coupling constant �s, as extracted from these measurements, and to a small shift of the central value.
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The precise determination of the Z-boson decay rate into
hadrons at LEP [1] has led to one of the most precise
determinations of the strong coupling constant �s. From
the experimental side, in view of the fully inclusive nature
of this measurement, the result is fairly robust, in particular
since it is insensitive to simulations of the hadronic final
state. Hence, the error is essentially dominated by the
statistical uncertainty. From the theory side, the advantage
of the measurement is its high energy, and as a result, the
irrelevance of nonperturbative and power-law suppressed
terms. The smallness of �s at high energies then leads to a
rapid decrease of higher order corrections in the perturba-
tive series and, correspondingly, to a significant reduction
of the theory error.

A variety of methods has been suggested to estimate the
remaining uncertainty in the theory prediction. Using the
last calculated term is probably the most conservative
approach; varying the renormalization scale � within an
energy range characteristic for the problem (e.g., MZ=3<
�< 3MZ) is frequently used, albeit with considerable
ambiguity in the actual choice of the region of the
�-variation. In order to reduce the theoretical uncertainty
in the extraction of �s to a level significantly smaller than
the experimental one (which amounts to �0:0026 at
present [1]), the knowledge of the corrections of Oð�4

sÞ
is necessary. At the same time this calculation opens
the window for a considerable improvement in the
�s-determination at Giga Z, the project of a high-
luminosity linear collider operating at the Z-resonance
(see, e.g., [2], where a precision of 0.0005 to 0.0007 has
been advertised). The dominant part of the �4

s-corrections,
the ’’nonsinglet’’ piece, has been evaluated in [3]. This has
lead to a slight shift of the central value of �s upward from
0:1185� 0:0026 to 0:1190� 0:0026 [3] and a reduction of
the theory error far below the error of 0.0026 from
the experiment. However, as noted already in [3], for a

complete evaluation of the decay rate in Oð�4
sÞ, an addi-

tional set of corrections, namely those for the ‘‘singlet’’
contributions, is required. For the axial current correlator,
these start at Oð�2

sÞ [4,5], and for the vector correlator at
Oð�3

sÞ. Both of them are presently known to third order in
�s only [6–10]. Hence, for a completely consistent Oð�4

sÞ
extraction of the strong coupling, the extension of these
results by one order in �s is required.
Before describing this calculation in detail, let us briefly

recall the basic structure of QCD corrections to the corre-
lator of the electromagnetic and the neutral current, re-
spectively, their similarities and their main differences.
After splitting off inessential kinematic factors, the absorp-
tive part of the current-current correlator of the electro-
magnetic current is expressed by the familiar R-ratio

Rem ¼ 3

�X
f

q2fr
V
NS þ

�X
f

qf

�
2
rVS

�
; (1)

where rVNS and rVS stand for the (numerically dominant)

nonsinglet and the singlet part respectively. The corre-
sponding decomposition for the correlator of the neutral
current involves the following four terms

Rnc ¼ 3

�X
f

v2
fr

V
NS þ

�X
f

vf

�
2
rVS þX

f

a2fr
A
NS þ rAS;t;b

�
; (2)

with vf � 2If � 4qfs
2
W , af � 2If and sW defined as ef-

fective weak mixing angle. Here, all but the top quark are
assumed to be massless.
(Mass corrections to both vector and axial vector corre-

lator due to other massive quarks are dominated by the
bottom quark and can be classified by orders inm2

b=M
2
Z and

�s. Up to Oð�2
sm

2
b=M

2
ZÞ and Oð�2

sm
4
b=M

4
ZÞ, they can be

found in [11], as can terms of order �2
sm

2
b=M

2
Z (constþ

logm2
b=M

2
Z) and �2

sm
2
b=M

2
t (constþ logm2

b=M
2
Z) that arise

from axial vector singlet contributions. Terms of order
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�3
sm

4
b=M

4
Z and �4

sm
2
b=M

2
Z can be found in [12,13], respec-

tively. Corrections of order �2
sm

2
Z=m

2
t and �3m2

Z=m
2
t from

singlet and nonsinglet terms are known from [4,5,14,15],
respectively. These are important for the actual
�s-determination but will not be discussed further in the
present Letter.)

From the prefactors of the nonsinglet contributions in
electromagnetic, vector, and axial correlator, it is evident
that different quark flavors contribute incoherently, hence
additive to the rate. Thus their contribution is significantly
enhanced in comparison with the singlet terms where
amplitudes from different flavors interfere destructively,
with prefactors ðPfqfÞ2 and ðPfvfÞ2 for the electromag-

netic and neutral current respectively.
Nonsinglet contributions are present at the parton level

and the QCD corrections are known in second [16], third
[6,7], and fourth [3] order in �s. In terms of Feynman
diagrams, nonsinglet contributions are characterized by the
fact that one quark loop connects the two external currents
[Fig. 1(a)]. In the absorptive part of this fermion loop, no
top quark is present due to kinematic reasons, whence the
nonsinglet functions are identical rVNS ¼ rANS � rNS.

In the case of singlet contributions of the vector current,
the two currents couple to two different quark loops
[Fig. 1(b)] requiring a three-gluon intermediate state.
Correspondingly, the leading term is of Oð�3

sÞ and has
been obtained long ago [6,7]. The next-to-leading-order
(NLO) corrections to this result are ofOð�4

sÞ. They serve to
soften the strong scale dependence of the Oð�3

sÞ result and
stabilize the theory prediction; they will be the subject of
this Letter.

The situation is different in the case of the singlet axial
vector current correlator. The axial couplings of the two
members of an isospin doublet are opposite equal. Hence,
their singlet contribution vanishes, if the corresponding
quark masses are equal. This approximation is valid for
the two lightest quark doublets. The only remaining con-
tribution originates from the combination of bottom and
top quarks with their specific mass hierarchym2

b � M2
Z �

m2
t [Fig. 1(c)]. In this case, the contribution starts atOð�2

sÞ
and is further enhanced by the ’’large’’ logarithm
logðm2

t =M
2
ZÞ [4,5]. Corrections of Oð�3

sÞ have been calcu-
lated in [8–10]; those of Oð�4

sÞ will be the subject of this
Letter.

The evaluation of the NLO terms of rSV requires the

calculation of the absorptive parts of five-loop diagrams
with massless propagators which, with the help of some

complicated combinatorics based on the R�-operation [17],
can be boiled down to the calculation of four-loop propa-
gator diagrams. The latter have been computed via reduc-
tion to 28 master integrals, based on evaluating sufficiently
many terms of the 1=D expansion [18] of the correspond-
ing coefficient functions [19]. This direct procedure re-
quired huge computing resources and was performed using
a parallel version [20] of FORM [21]. The master integrals
are reliably known from [22–24]. The details of the calcu-
lation, the results in analytic form, and their relation to the
Gross–Llewellyn Smith sum rule will be given in [25].
The evaluation of the next-to-next-to-leading-order

terms of RA
S;t;b involves again absorptive parts of five-

loop diagrams with massless propagators, however, in
addition also absorptive parts of four-loop diagrams com-
bined with one-loop massive tadpoles, etc. down to one-
loop massless diagrams together with four-loop massive
tadpoles. The latter have been computed with the help
of the Laporta algorithm [26] implemented in CRUSHER

[27]. The methods employed in our calculations, together
with the results, will be described in more detail in [25].
The result is valid in the limit M2

Z � 4M2
t , an excellent

approximation as evident from the lower orders. The rela-
tive importance of the various terms is best seen from the
results for the various r-ratios introduced above, expressed
in numerical form

rNS¼1þasþ1:4092a2s�12:7671a3s�79:9806a4s ;

rVS ¼�0:4132a3s�4:9841a4s ;

rAS:t;b¼ð�3:0833þltÞa2sþð�15:9877þ3:7222lt

þ1:9167l2t Þa3sþð49:0309�17:6637ltþ14:6597l2t

þ3:6736l3t Þa4s ; (3)

with as ¼ �sðMZÞ=� and lt ¼ lnðM2
Z=M

2
t Þ. Since all three

r-ratios are separately scale invariant, the corresponding
results for a generic value of �sð�Þ can easily be recon-
structed. Using for the pole massMt the value 172 GeV, the
axial singlet contribution is given in numerical form by

rAS;t;b ¼ �4:3524a2s � 17:6245a3s þ 87:5520a4s : (4)

Collecting now all QCD terms, the decay rate of the Z
boson into hadrons can be cast into the following form

�Z ¼ �0R
nc ¼ GFM

3
Z

24�
ffiffiffi
2

p Rnc: (5)

Here, all electroweak corrections are assumed to be col-
lected in the prefactor �0, and the forementioned mass
corrections are ignored as well as electroweak and mixed
QCD-electroweak corrections [28–30]. Thus the R ratio is
now known up to Oða4sÞ:

FIG. 1. Different contributions to r-ratios: (a) nonsinglet,
(b) vector singlet, and (c) axial vector singlet.
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Rnc¼20:1945þ20:1945asþð28:4587�13:0575þ0Þa2s
þð�257:825�52:8736�2:12068Þa3s
þð�1615:17þ262:656�25:5814Þa4s ; (6)

with s2W ¼ 0:231. The three terms in the parentheses dis-
play separately nonsinglet, axial singlet, and vector singlet
contributions.

Let us now evaluate the impact of the newly calculated
terms on the �s-determination from Z-decays. Following
our approach for the nonsinglet terms (where a shift ��s ¼
0:0005 had been obtained [3], consistent with an analysis
[31] based on results of the Electroweak Working Group
[1] and a modified interface to ZFITTER v. 6.42 [32,33] and
confirmed by the G-fitter Collaboration [32–34]), we con-
sider the quantity Rnc as ‘‘pseudo-observable.’’ With a
starting value Rnc ¼ 20:9612, if evaluated for �s ¼
0:1190 and without the �4

s singlet terms, a shift ��s ¼
�0:00008 is obtained after including the newly calculated
contributions.

As discussed in [3], the nonsinglet �4
s term leads to a

considerable stabilization of the theory prediction and,
correspondingly, to a reduction of the theory error. A
similar statement holds true for the singlet contribution.
To illustrate this aspect, the dependence on the renormal-
ization scale� is shown in Fig. 2 for rNS, r

V
S and rAS;t;b. The

relative variation is significantly reduced in all three cases.
In particular for the vector singlet case, we observe a shift
of the result by about a factor 1.45 (for � ¼ MZ) and a
considerable flattening of the result. Using for example the
principle of minimal sensitivity [35] as a guidance for the
proper choice of scale, � ¼ 0:3MZ seems to be favored,
leading to an amplification of the LO result by a factor
1.68 (if the latter is evaluated for � ¼ MZ, as done
traditionally).

Let us assume that the remaining theory uncertainties
from rNS, r

V
S and rAS;t;b can be estimated by varying �

between MZ=3 and 3MZ and using the maximal variation
as twice the uncertainty �r. This leads to ��NS ¼
0:101 MeV, ��V

S ¼ 0:0027 MeV and ��A
S ¼ 0:042 MeV.

Even adding these terms linearly, they are far below the
experimental error of ��exp ¼ 2:0 MeV [36]. In combina-

tion with the quadratic and quartic mass terms, which are
known toOð�4

sÞ andOð�3
sÞ respectively, this analysis com-

pletes the QCD corrections to the Z decay rate.
Let us also comment on the impact of the �4

s singlet
result on the measurement of Rem at low energies, i.e., in
the region accessible at Beijing Spectrometer-III or at B
factories, say between 3 and 10 GeV. Considering the
large luminosities collected at these machines, a precise
�s determination from Rem seems possible [37]. In the
low energy region, only rVS and rVNS contribute. SinceP

f¼u;d;sqf ¼ 0, the singlet contribution vanishes in the

three-flavor case. If we consider the region above charm
and below bottom threshold, say at 10 GeV, only u, d, s,

and c quarks contribute, the relative weight of the
rVS in Eq. (1) is given by ðP qfÞ2=ð

P
q2fÞ ¼ 2=5, and

thus is fairly suppressed. At energy of 10 GeV, in the
absence of open bottom quark contribution, it seems
appropriate to analyze the results in an effective four-
flavor theory with

rVS ¼ �0:41318a3sð�Þ � ð5:1757þ 2:5824 ln�2=sÞa4sð�Þ:
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FIG. 2. Scale dependence of (a) non-singlet rNS, (b) vector
singlet rVS , and (c) axial vector singlet rAS;t;b. Dotted, dash-dotted,

dashed, and solid curves refer to Oð�sÞ up to Oð�4
sÞ predictions.

�sðMZÞ ¼ 0:1190 and nl ¼ 5 is adopted in all these curves.
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As shown in Fig. 3, it is evident that the scale dependence
is softened in NLO. Again a scale � around 0:3

ffiffiffi
s

p
minimizes the NLO corrections.

In conclusion, we want to mention that all our calcula-
tions have been performed on a SGI ALTIX 24-node
IB-interconnected cluster of 8-cores Xeon computers using
parallel MPI-based [20] as well as thread-based [38] ver-
sions of FORM [21]. For evaluation of color factors we have
used the FORM program COLOR [39]. The diagrams have
been generated with QGRAF [40].

This work was supported by the Deutsche
Forschungsgemeinschaft in the Sonderforschungsbereich/
Transregio SFB/TR-9 ‘‘Computational Particle Physics,’’
by Graduiertenkolleg 1694 ‘‘Elementarteilchenphysik bei
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Lett. 101, 012002 (2008).

[4] B. A. Kniehl and J. H. Kühn, Nucl. Phys. B329, 547
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(1993).

[9] K. G. Chetyrkin and O.V. Tarasov, Phys. Lett. B 327, 114
(1994).

[10] S. A. Larin, T. van Ritbergen, and J. A.M. Vermaseren,
Phys. Lett. B 320, 159 (1994).

[11] K. G. Chetyrkin, J. H. Kühn, and A. Kwiatkowski, Phys.
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