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The validity of the fluctuation theorem for entropy production as deduced from the observation

of trajectories implicitly requires that all slow degrees of freedom are accessible. We experimentally

investigate the role of hidden slow degrees of freedom in a system of two magnetically coupled driven

colloidal particles. The apparent entropy production based on the observation of just one particle obeys a

fluctuation theorem–like symmetry with a slope of 1 in the short time limit. For longer times, we find a

constant slope, but different from 1. We present theoretical arguments for a generic linear behavior both for

small and large apparent entropy production but not necessarily throughout. By fine-tuning experimental

parameters, such an intermediate nonlinear behavior can indeed be recovered in our system as well.
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Introduction.—Basic concepts of thermodynamics and
statistical physics implicitly rest on a separation of all
degrees of freedom into observable and non-observable
ones. Heat exchange, for example, is associated with the
myriads of fast degrees of freedom which are not resolved
dynamically, whereas work typically involves a few con-
trolled, slow degrees of freedom. In systems without a
clear-cut time-scale separation, ambiguities and inconsis-
tencies may arise if such concepts are still applied naively.
Here we explore this issue for one of the arguably most
relevant concepts, entropy production �stot, for non-
equilibrium steady states (NESS). For such states, the
fluctuation theorem (FT) refers to a remarkable symmetry
that quantifies the probability p of observing trajectories
with negative total entropy production as

ln½pð�stotÞ=pð��stotÞ� ¼ ��stot; (1)

with � ¼ 1 and Boltzmann’s constant set to unity [1–5].
The FT has been proven for two types of dynamics.

First, for deterministic dynamics the proof rests on the
chaotic hypothesis, including time reversibility and a
phase-space contraction associated with dissipation [2].
Second, in stochastic dynamics the FT requires the concept
of entropy production along trajectories and can be proven
for Markovian systems [3–5]. The latter dynamics applies
to experiments on driven colloidal particles [6,7] and a
harmonic oscillator coupled to a thermal bath [8].
Experimental tests of FT-like symmetries have also been
reported for Rayleigh-Bénard convection [9], turbulent
flow [10], granular matter [11], and self-propelled particles
[12]. For these systems the appropriate class of dynamics is
less obvious and hence the status regarding the assump-
tions of the FT is unclear a priori. One should also appre-
ciate that the measured observable for some of these
systems is typically not �stot directly, but rather some
dimensionful quantity, like, e.g., the injected or dissipated

work [11,13], which requires a temperature for a unique
conversion to entropy. Strictly speaking, the FT is thus
verified only if this temperature can be determined inde-
pendently and if it leads to � ¼ 1. Complementarily, in
more recent reports, the validity of the FT (with � ¼ 1) is
assumed and used to gain information about such a dimen-
sionful factor connecting the actual observable with en-
tropy production [14,15].
For stochastic dynamics, the proof of the FTwith � ¼ 1

rests on a time-scale separation. Fast degrees of freedom
contribute to an effectively white noise leading then to a
Markovian dynamics of the slow degrees of freedom.
Entropy production can be deduced from observing the
dynamics of all slow degrees of freedom. If some of these
degrees of freedom are not, or cannot, be observed, the
inferred entropy production is only an apparent one for
which the status of an FT-like symmetry is unclear a priori.
Theoretical efforts to describe coarse-graining in general
have been restricted so far to the case of well separated
time scales [16–18], and how such coarse-graining affects
bounds on dissipated work [19]. In the framework of
electronic devices FT-like symmetries for currents have
been discussed in Refs. [20–22].
In the present paper, we investigate the role of hidden

slow degrees of freedom on apparent entropy production
for a paradigmatic system with two magnetically coupled
driven colloidal particles.
Apparent entropy production.—The total entropy pro-

duction �stot is given by the sum of the entropy changes of
the heat bath and system [5]

�stot ¼ Q=T þ ln½psðx0Þ=psðxtÞ�; (2)

where Q ¼ R
t
0 d�

P
n
i¼1 _xið�ÞFi½xð�Þ� is the heat transfer of

all n degrees of freedom x � ðx1 . . . xnÞ to the solvent at
temperature T. Here, _xi is the actual velocity and Fi is the
total force acting on the ith degree of freedom. The change
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of the system’s entropy includes the stationary probability
distribution psðx0Þ [psðxtÞ] of finding the initial [final]
state of the system along the trajectory of length t. In a
NESS, the system satisfies the stationary Smoluchowski
equation 0 ¼ �P

i@xij
s
i ðxÞ, where the probability current

jsi ðxÞ ¼ psðxÞ�s
i ðxÞ is given as the product of ps and the

mean local velocity [5]

�s
i ðxÞ � D0½FiðxÞ=T � @xi lnp

sðxÞ�; (3)

with D0 the bare diffusivity. Multiplying Eq. (3) with _xi
and integrating over time yields the total entropy produc-
tion as given in Eq. (2),

�stot ¼
Z t

0
d�

Xn
i¼1

_xið�Þ�s
i ½xð�Þ�=D0; (4)

where the sum involves all n degrees of freedom x. If only
the first ~n of these, ~x � ðx1 . . . x~nÞ, are accessible, an ob-
server is forced to deduce all information from these
trajectories. The actual velocities _~x can still be measured
correctly, whereas the mean local velocity obtained from
the accessible trajectories is

~� s
i ð~xÞ �

Z
�s
i ðxÞpsðx̂j~xÞdx̂; (5)

with the conditional probability psðx̂j~xÞ for x̂ �
ðx~nþ1; . . . ; xnÞ at fixed ~x. Hence, the apparent entropy
production becomes

�~stot ¼
Z t

0
d�

X~n
i¼1

_xið�Þ~�s
i ½~xð�Þ�=D0; (6)

where the sum runs over the ~n accessible degrees of free-
dom only. In this Letter, we investigate the conditions
under which this quantity obeys a FT-like symmetry.

Experiment.—We have created two non-overlapping to-
roidal traps with radius R ¼ 3:5 �m and a center-center
distance of 17 �m by a single laser beam ð� ¼ 1070 nmÞ
which was deflected on a galvanometric mirror unit (for
details refer to [23,24]). Each trap contained a single
paramagnetic colloidal particle with a 2:6 �m radius
(Microparticles, Berlin) and labeled by an index i ¼ 1; 2
[see Fig. 1(a)]. The traps are approximately 50 �m away
from the lower surface; therefore, hydrodynamic interac-
tions with the walls are negligible [25]. The scanning
frequency was adjusted to 41 Hz, which leads to quasistatic
tangential forces fi acting on the ith particle along the
toroidal traps whose amplitude depends on the laser inten-
sity. In our experiments, the time for a full revolution of
each particle was adjusted to 10 s. Synchronized with the
scanning motion of the laser beam, its intensity was sinus-
oidally modulated with an acousto-optic modulator which
finally leads to an effective optical potential UiðxiÞ ¼
ViðxiÞ � fixi with ViðxiÞ ¼ V0

i sinðxiÞ, where xi is the par-
ticle position along the trap circumference in units of �R

[see Fig. 1(a)]. Accordingly, both particles reach NESS,
where fi and V0

i can be controlled independently.
A coupling between the two NESS is obtained by a static

homogeneous magnetic field B applied perpendicular to
the sample plane. This field induces magnetic moments m
to the particles leading to a repulsive dipolar particle
interaction Wðx1; x2Þ ¼ ð�0=4�Þm2=r3ðx1; x2Þ. Here, �0

is the magnetic constant and r the particle distance. For
small magnetic fields (B � 40 mT), as in our experiments,
the magnetic moment scales as m � ð�m0=3ÞB with
� ¼ 30 T�1 and m0 ¼ 5:9� 10�13 Am2 [26]. The
strength of the dipolar coupling can be conveniently
characterized by a dimensionless plasma parameter
� � �W=ðkBTÞ, where �W corresponds to the difference
of the coupling at the smallest and largest particle distance
r. Additional particle interactions, e.g., hydrodynamic cou-
pling or optical binding, are negligible at the chosen trap
separations as confirmed by the independent motion of the
particles in the absence of a magnetic field.
Results.—We investigate the effect of coupling by pre-

paring two identical NESS, where the potential minima
face each other. Figures 1(b)–1(d) show the stationary
probability distribution psðx1; x2Þ as color coded back-
ground and as white circles one exemplary trajectory. In
the absence of coupling, the peak in ps corresponds to the
flattest part in the potentials, where the particles slow down
and therefore are most likely to be found [see Fig. 1(b)].

-1

0

+1

x 2
(

R
)

0,1500
0,1650
0,1800
0,1950
0,2100
0,2250
0,2400
0,2550
0,2700
0,2850
0,3000

-1 0 +1
-1

0

+1

x 2
(

R
)

x
1

( R)

-1

0

+1

x 2
(

R
)

-1 0 +1
-600

-300

0

300

600

po
te

nt
ia

l(
un

its
of

k B
T

)

x
1
, x

2
( R)

0

R+--

x2

f1

f2

0

1x

R

(a)

(b)

(c)

(d)

R

U2U1

B

R+--

min.

max.

FIG. 1 (color online). (a) Schematic representation of the
system and measured tilted potentials (V0

1 ¼ V0
2 ¼ 181kBT and

f1 ¼ �f2 ¼ 57kBT=�m calculated via [28]). (b)–(d) Stationary
probability distribution psðx1; x2Þ for different plasma parame-
ters �. The white circles indicate typical trajectories.
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Under strong coupling conditions [see Fig. 1(d)], the re-
pulsion hinders the particles from coming close to each
other. The peak of ps vanishes since the approach of one
particle kicks the other one away, leading to motion like a
Newton’s cradle. In the intermediate regime [see Fig. 1(c)],
the coupling interaction is comparable with the energy loss
acquired while the particle moves along half a circle. Here
the full interplay between drift, diffusion, and interaction
has to be taken into account and we expect the influence of
hidden degrees of freedom on the FT to be most prominent.
Therefore, we concentrate on �~stot associated with the
motion of only the first particle, which represents the
observed degree of freedom, whereas the coupling allows
us to uniquely control the influence of the second particle,
which acts as a hidden degree of freedom.

The black histograms (closed bars and line) in Fig. 2(a)
show the distribution of the apparent entropy production
pð�~stotÞ in the absence of coupling obtained for trajectories
of length t ¼ 1:75 s and 10 s, respectively. The peaked
distribution shifts with elapsing time to the right with peak
height maxima occurring at positions which correspond to
the energy loss associated with full revolutions of the
particle, 2�Rf ¼ 1250kBT. To investigate the FT, rare
events with negative entropy production have to be
sampled with high accuracy. This constrains the maximal
trajectory length t to approximately 2 s and the range
within the FT can be tested to �3. Figure 2(b) shows
the section of the black histogram (closed bars) around
�~stot ¼ 0. The excellent agreement between the logarithm
of the probability ratio pð�~stotÞ=pð��~stotÞ, black squares

in Fig. 2(c), and the black dashed line with a slope of 1
confirms the validity of Eq. (1) for uncoupled states. The
red histogram (open bars) in Figs. 2(a) and 2(b) demon-
strates the situation for coupled states. Most prominent is
the enhanced probability at �~stot ¼ 0. Since the red dots in
Fig. 2(c) do not agree with the dashed line of slope 1 this
apparent entropy production does not obey the FT. Rather a
linear relation as given by Eq. (1) with � ’ 0:65 is found.
In additional experiments, we observe linear relations

according to Eq. (1) with different slopes �, which depend
on two parameters: (i) the plasma parameter �, and (ii) the
trajectory length t, as shown in Figs. 3(a) and 3(b). Clearly,
the FT is confirmed for arbitrary trajectory lengths in
uncoupled states [black squares in Fig. 3(b)]. The obvious
dependence of � on � resembles the transition from an
uncoupled to a coupled state. For � ¼ 300, � decays with
increasing length t, from 1 to 0.65. A similar time depen-
dence has been also observed in [14]; however, there it was
not identified as an inherent feature of hidden degrees of
freedom. In additional measurements performed for cou-
pling two different NESS, we also found such a linear
relation. Therefore, we exclude symmetry as the sole ori-
gin of this behavior.
Discussion.—First, we explain why for t ! 0 the slope

� approaches 1. In general, deviations from the FT must be
caused by the interaction with the hidden particle. In a
short time expansion to lowest order in t, we can neglect
changes in the interaction force during the motion of the
observed particle. Thus, the interaction force entering
Eq. (6) through ~�s becomes constant in this limit. The
apparent entropy production then becomes equivalent to
that of an effective one-particle system subject to a
Markovian dynamics with mean local velocity ~�s, which
trivially obeys the FT. This effective description is valid
only to lowest order in time since taking into account
higher order terms would include contributions arising
from the correlated motion of the observed and the hidden
particle.
Although we are able to qualitatively understand the

influence of coupling it remains a surprising feature why,
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FIG. 2 (color online). (a) Distribution of the apparent entropy
production pð�~stotÞ for different trajectory lengths t and plasma
parameters �. (b) Section of previous histograms around �~stot ¼
0. (c) Corresponding ln½pð�~stotÞ=pð��~stotÞ� as a function of
�~stot. The dashed black line has the theoretically predicted slope
of 1, whereas the red line is a linear fit with slope � ¼ 0:65.
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FIG. 3 (color online). (a) Slope � vs plasma parameter � for
t ¼ 1:75 s. (b) Slope � for different trajectory lengths t. The
black squares correspond to � ¼ 0 and the red dots to � ¼ 300.
The deviation of the black squares from � ¼ 1 (black dashed
line) determines the statistical errors to be less than 5%.
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in all of our experiments presented so far, only the slope of
the FT is affected by the coupling strength while the linear
relation Eq. (1) remains untouched. In order to elucidate
this result we define the function

fð�~stotÞ � ln½pð�~stotÞ=pð��~stotÞ�; (7)

which we assume to be analytic. First, we note that f is
antisymmetric by construction, and thus for small entropy
productions, �~stot � 1, f trivially must be linear up to
corrections of third order or higher [27]. Second, we dis-
cuss f for large entropy productions, �~stot 	 1. Solving
Eq. (7) for pð��~stotÞ and integrating over all �~stot yields

Z þ1

�1
pð�~stotÞe�fð�~stotÞd�~stot ¼ 1; (8)

by normalization. We assume that pð�~stotÞ does not decay
faster than a Gaussian as we have observed in all our
measurements. For any quantity consisting of independent
contributions the central limit theorem would imply a
Gaussian. Any correlation will typically lead to an even
slower decay. Under this assumption convergence of the
integral in Eq. (8) requires that fð�~stotÞ ¼ Oð�~s2totÞ. Since,
in addition, f is antisymmetric we expect the generic
asymptotic behavior to be linear, fð�~stotÞ 
�~stot, with a
slope generally different from the one for small �~stot.

Summarizing these arguments, we expect a linear func-
tion both for small and for large entropy production for any
time t. For intermediate entropy production this reasoning
leaves the possibility of a nonlinear behavior. Even though
we have found a constant slope for most experimental
parameters, by fine-tuning the system and plasma parame-
ter, we can observe an obviously nonlinear result, as shown
in Fig. 4(a).

In contrast to the previous data, here, the two particles
are subjected to quite different potentials whereas the
driving forces remain untouched. The potential of the
hidden particle is adjusted such that it circulates freely
along the torus (V0

2 ¼ 71kBT) whereas a deep minimum

(V0
1 ¼ 262kBT) remains in the tilted potential U1 of the

observed particle, which, for � ¼ 0, it is not able to leave.
The latter’s motion sets in only when the coupling helps to
surmount the potential barrier. This mode is identified in a

typical trajectory shown in Fig. 4(b). The hidden particle
(gray/thin line) moves with a period of 4 s and almost
constant velocity along U2ðx2Þ. Around x2 ¼ 0:75 it
slightly slows down due to interaction. The reaction of
the observed particle (blue/thick line) is more pronounced
since locally it is confined within a potential minimum at
x1 ¼ �0:35 and there the interaction forces are dominant,
displacing it along positive x1. The apparent oscillations in
the trajectory originate from the fact that not every time the
observed particle is pushed (by the hidden one) this action
results in a surmounting of the potential barrier. In most of
the cases, the particle just relaxes to its original position.
We observe that nonlinearities in the intermediate regime
of �~stot are most pronounced when the trajectory length
matches approximately the oscillation period.
Concluding perspectives.—We have investigated the in-

fluence of hidden slow degrees of freedom on the FT. In our
experiments, we typically find that a FT-like symmetry is
preserved, however, with a different slope which depends,
in particular, on the length of the observed trajectories.
Consequently, in any experiment, where hidden slow de-
grees of freedom cannot be ruled out a priori, an observed
linear behavior cannot be used to infer quantities by im-
plicitly assuming � ¼ 1. Theoretically, we have argued
that a slope of 1 is to be expected for short trajectories
while, for any length, for both small and large entropy
production a constant slope should be generic. Classifying
theoretically the conditions for finding an almost constant
slope over the full range, as we often did in our experi-
ments, remains a task for future work. Likewise, it will be
important to explore, in both theory and experiments, how
hidden slow degrees of freedom affect other quantities, like
work and heat, their exact relations, and the fluctuation-
dissipation theorem for NESS.
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