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Dynamical quantum jumps were initially conceived by Bohr as objective events associated with the

emission of a light quantum by an atom. Since the early 1990s they have come to be understood as being

associated rather with the detection of a photon by a measurement device, and that different detection

schemes result in different types of jumps (or diffusion). Here we propose experimental tests to rigorously

prove the detector dependence of the stochastic evolution of an individual atom. The tests involve no

special preparation of the atom or field, and the required efficiency can be as low as � � 58%.
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Quantum jumps—the discontinuous change in the state
of a microscopic system (such as an atom) at random
times—were the first form of quantum dynamics to be
introduced [1,2]. This was in the 1910s, long before the
notion of entanglement, and its puzzles such as the
Einstein-Podolsky-Rosen (EPR) paradox [3], had been
introduced, and before the special role of measurement
in quantum mechanics had been elucidated [4]. Thus these
jumps were conceived of as objective dynamical events,
linked to an equally objective photon emission event.

The modern concept of quantum jumps in atomic sys-
tems is based on ‘‘quantum trajectory’’ theory [5], intro-
duced independently in Refs. [6–8]. This theory comprises
stochastic evolution equations for the microscopic system
state conditioned on the results of monitoring the bath to
which it is weakly coupled. These are also known as
‘‘unravelings’’ [5] of the system’s master equation (ME),
as the ensemble average of the quantum trajectories of the
(ideally pure) state of an individual system replicates the
mixture-inducing evolution of theME. This theory has been
applied also to solid-state qubits and other quantum systems
[9–11]. In the atomic case, a photodetection event causes
the state of the distant atom to jump because of entangle-
ment between the bath (the electromagnetic field) and the
atom. That is, the quantum jumps are detector dependent; in
the absence of a measurement there would be no jumps.
This is in marked contrast to the objective jumps of Bohr
and Einstein, linked to a supposed emission event.

One could well be tempted to ask what difference does it
make if we say a jump is caused by the emission of a
photon rather than saying it is caused by the detection of
a photon? If photon detection were the only way to mea-
sure the emitted quantum field then the answer would
indeed be: no real difference at all. But there are many
(in fact infinitely many) other ways to measure the emitted
field. For instance one can interfere it with a local oscillator
(LO)—that is, another optical field in a coherent state—
prior to detection [5].

In quantum optical detection theory radically different
stochastic dynamics for the atomic state occur depending
on the detection scheme used by a distant observer [5,8,9].
Perfect ‘‘direct’’ (no LO) photon detection gives rise to the
quantum jump model of Bohr and Einstein. Perfect het-
erodyne detection (with a strong, far-detuned LO), by
contrast, gives rise to a particular type of pure-state quan-
tum diffusion [12], originally proposed as an objective
(i.e., detector-independent) model of ‘‘quantum state
diffusion’’ (QSD) [13]. It is not that either the quantum
jump model or the QSD model is wrong. Rather it is the
fact that both are valid unravelings of the same ME that
says that neither of them are objective pure-state dynamic
models (OPDM); according to quantum optical measure-
ment theory, no such model can exist.
In this Letter we drop the assumption that quantum

optical measurement theory is correct in order to ask
whether, and how, one could try to rule out these OPDMs
experimentally, Moreover, we do not want to rule out just
the quantum jump model and the QSD model as detector-
independent models; we want experiments that could rule
out all OPDMs. This would prove that quantum jumps
(or diffusion) is measurement dependent.
We propose experimental tests on a resonantly driven

two-level atom that could rule out all OPDMs for the atom,
and that do not require any special preparation of the
atom or field. The key to these tests is the ability to imple-
ment two different ways of monitoring the radiated
field, giving rise to two different sorts of stochastic
evolution. This is an instance of the EPR phenomenon,
also known as ‘‘steering’’ [14], when understood suffi-
ciently generally [15]. Specifically, under the assumption
that an objective state exists (obeying some OPDM), we
derive an EPR-steering inequality [16] that could be
violated experimentally [17,18]. With two particular
monitoring schemes we propose, this could be done for
efficiencies as low as 0.58, which is the main result of
this Letter.
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This Letter is organized as follows. First we briefly
explain how EPR steering can be demonstrated experimen-
tally. Then we present the model quantum system for our
investigation: resonance fluorescence of a strongly driven
two-level atom. Next we present two very different moni-
toring schemes: a spectrally resolved photon counting
(jump) scheme; and a homodyne (diffusion) scheme. We
then show that an EPR-steering inequality suitable for
these continuous-in-time measurements can be violated
for an efficiency �> 0:58. We also consider the option
of using two different homodyne schemes (X and Y).
Although the minimum sufficient efficiency is somewhat
higher in this case (�> 0:73), this test would probably be
more practical. Finally we derive a necessary efficiency
condition �> 1=2 which pertains even if one could imple-
ment the whole class of diffusive unravelings.

EPR-steering.—In the original EPR paradox [3], the
ability of one party (Alice) to measure different observ-
ables—position and momentum—on her half of an en-
tangled state allows her to collapse the state of the other
half (Bob’s) into different and incompatible states—
position and momentum eigenstates—at will. That is, the
essence of the phenomenon is that Alice can disprove the
hypothesis that Bob’s system has an objective quantum
state (i.e., one existing independent of her measurement
choice) [15]. It is this general phenomenon of EPR steering
that lies behind our tests.

In our case Bob has a two-level system, or qubit. For any
qubit state � it is easy to verify that

f1ð�Þ þ f2ð�Þ � 1; (1)

withf1ð�Þ� ðTr½�̂x��Þ2, f2ð�Þ� ðTr½�̂y��Þ2þðTr½�̂z��Þ2.
Now under the objective quantum state assumption, Bob’s
system is in some pure state �O

c ¼jc ihc j. This state may be

unknown to him, and chosen at random from an ensemble
f~�O

c g. Here we are using unnormalized states ~�O
c ¼ pO

c�
O
c ,

where pO
cd�ðc Þ is the probability distribution over the pure

states, with d�ðc Þ being a standard measure. Now Eq. (1)
applies for all �, so

E½f1ð�OÞ� þ E½f2ð�OÞ� � 1; (2)

where E½fð�OÞ� � R
d�ðc ÞpO

c fð�O
c Þ.

Say now that Alice can choose between two different
measurements, called S and Y (for reasons that will be-
come apparent later). Under the objective state assumption,
Alice’s measurement can do nothing except provide some
information about which state �O

c pertains to Bob’s system.

That means that the ensemble of possible states for Bob’s
system, conditioned on the result of Alice’s measurement
S, is a coarse graining of Bob’s objective pure-state
ensemble [19]. Since f1 is convex on the state space of
�, it follows that E½f1ð�SÞ� � E½f1ð�OÞ� [16]. The same
remarks hold for the Y ensemble and f2, so E½f2ð�YÞ� �
E½f2ð�OÞ�. Thus from Eq. (2) we have

SS;Y � E½f1ð�SÞ� þ E½f2ð�YÞ� � 1: (3)

The two terms in this EPR-steering inequality can be
measured experimentally by Alice choosing between
measurements S and Y, and by Bob correlating the results
of measurements on his qubit with the results Alice reports.
If Eq. (3) is violated then the experiment disproves the
hypothesis that Bob has an objective pure state. This is
possible only if (as in the EPR paradox) Bob’s system is
entangled with Alice’s prior to her measurement. Further
details on the above argument, in particular, how it works
when each of Alice’s measurements is a continuous-
in-time readout of a quantum field, are given below.
Example quantum optical system.—Let Bob’s quantum

system be a single two-level atom, driven by a resonant
laser field. This is described by the resonance fluorescence
ME; in the usual interaction frame [9], which removes the
atomic transition frequency !0, this is

_� ¼ L� � �i½Ĥ�; �� þ �D½�̂���: (4)

Here Ĥ� ¼ ð�=2Þ�̂x is the Hamiltonian describing reso-
nant driving, �̂� ¼ ð�̂x � i�̂yÞ=2 is the atomic lowering

operator, and D½ĉ�� � ĉ�ĉy � 1
2 ðĉyĉ�þ �ĉyĉÞ as usual.

Now move into the �-rotating frame with respect to the

Hamiltonian Ĥ�. This effects the transformation

�̂� ! 1
2ð�̂þ�e�i�ðt�t0Þ þ �̂x � �̂�þeþi�ðt�t0ÞÞ; (5)

where �̂�þ ¼ ð�̂þ�Þy � jþih�j and �̂xj�i ¼ �j�i. Now if
� � � then in this rotating frame we can make the secular
approximation, dropping terms in the ME rotating at
frequency � or 2�. This gives the approximate ME

_� ¼ �L� � �

4
ðD½�̂þ�� þD½�̂x� þD½�̂�þ�Þ�: (6)

The simplicity of this equation allows us to obtain the
semianalytical results for EPR steering below. Some ex-
perimental considerations are discussed in Ref. [20].
Spectral adaptive interferometric detection (SAID).—

The three irreversible terms in Eq. (9) correspond to the
three spectral peaks in resonance fluorescence, at frequen-
cies !0 ��, !0, and !0 þ� respectively. If Alice uses a
spectrally resolving detection technique in the limit of
large �, the atom will undergo three types of jump [21].
The jump operator from the first term (�̂þ�) collapses the
atom into the j�i state; that from the last (�̂�þ) into the jþi
state. These are ‘‘good’’ jumps in terms of making the
system state pure. The jump operator from the middle
term (�̂x), however, does not change the purity of the state.
This makes it a ‘‘bad’’ jump because, if the efficiency is
less than unity, the purity of the system state decays
monotonically following a jump, and can be restored
only when it next jumps. However these ‘‘bad’’ jumps
can be made ‘‘good’’ if Alice adds a weak LO to the
fluorescence before detection, resonant with the atom,
so that the source field is proportional not to �̂�, but to
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�̂� � 1=2. Here the two cases correspond to opposite signs
for the LO. Then the jump operator from the middle term
becomes proportional to �̂x � 1, which equals 2�̂�, where
�̂� ¼ j�ih�j.

The optimal scheme, for maximizing the purity of the
state, is to choose the LO phase adaptively, using real time
feedback [9]. Specifically, Alice should choose the � case
when the preceding jump put the atom into the j�i state.
This choice maximizes the rate of jumps, which is optimal
because every jump repurifies the atom. Following a jump
into state jþi, the quantum trajectory theory appropriate to
an efficiency �S � 1 [9] predicts that the unnormalized
state will evolve according to

_~� S ¼ �L~�S � ��S

4
ðJ ½�̂þ�� þ 4J ½�̂þ� þ J ½�̂�þ�Þ~�S; (7)

where the ‘‘S’’ superscript means the state is conditioned
on this SAID scheme and J ½ĉ�� � ĉ�ĉy as usual. This
state is unnormalized, with the decaying norm equal to the
probability of lasting so long without another jump.

It is easy to verify that the solution of Eq. (7) is a mixture
of x eigenstates, and that each jump repurifies it to x ¼ �1.
Thus the stationary ensemble f~�S

xg of conditional states
under the SAID scheme is indexed by a single real
parameter, x ¼ h�̂xi. We can quantify how well the scheme
maintains the state purity by E½ðh�̂xiSÞ2�, the ensemble
average of the square of x. We show in Ref. [20] how to
calculate this analytically. The result is shown as a function
of �S, in Fig. 1(a) as a red dashed line. As expected, it is
monotonically increasing with �S and attains unity as
�S ! 1.

Y-homodyne detection.—As our second unraveling of
the ME (4) we consider homodyne detection. The quantum
trajectories for the normalized conditioned state under
this monitoring are obtained by adding the following
(zero-mean) term to the ME (4) [9]

d�Q ¼ ffiffiffiffi
�

p
H ½dZ�ðtÞ�̂���Q: (8)

Here H ½ĉ� � ĉ�þ �ĉ� Tr½ðĉþ ĉyÞ��, and ZðtÞ is a
complex random Wiener increment (related to the noise
in the photocurrent), normalized so that hjdZðtÞj2i ¼ �Qdt.
The phase � of the LO appears in hdZðtÞ2i ¼ e2i��Qdt.
This allows different quadratures (‘‘Q’’) to be monitored,
and the Y quadrature corresponds to � ¼ �=2.

For homodyne detection to maintain a high-purity con-
ditioned atomic state in the � � � limit requires the
effective bandwidth [9] of the detector to be much greater
than�, as the spectrum of the homodyne photocurrent will
have a signal at zero frequency and at �� [12]. These
correspond to the three terms in Eq. (9), and in that rotating
frame the additional terms describing conditioning on
Y-homodyne detection are

d�Y ¼
ffiffiffiffiffiffiffiffiffiffi
�Y�

4

r
H ½idV��̂

þ� þ idWx�̂x � idV�
��̂

�þ��Y: (9)

Here dV� is an irreducibly complex Wiener increment
satisfying hjdV�j2i ¼ dt but hdV2

�i ¼ 0, independent of
the real increment dWx. The minus sign before the last
term comes from the corresponding minus sign in Eq. (5).
It is not difficult to show that the long-time solution of

this Y-homodyne quantum trajectory is confined to the
x ¼ 0 plane of the Bloch sphere, and so is parametrized by
two numbers, y ¼ h�̂yi and z ¼ h�̂zi. That is, the ensemble

f~�Y
ðy;zÞg of conditioned states in this case is as different as

possible from the ensemble f~�S
xg in the SAID monitoring

case, which is confined to the x axis. As above, we can
quantify howwell thismonitoring schememaintains the state
purity by the long-time expectation for the square of the
conditional average of theBloch vector length,E½ðh�̂yiYÞ2 þ
ðh�̂ziYÞ2�. As we show in Ref. [20], this can easily be calcu-
lated to arbitrary numerical precision. The result is shown in
Fig. 1(a) as the solid blue line. It is similar to that for SAID,
but is smaller (the conditioned states tend to be less pure).
EPR-steering criterion.—Assume now, as imagined in

OPDMs, that the atom has some ‘‘true’’ pure state �O
c ¼

jc ihc j at every instance of time. The index c that pertains
at any particular time changes stochastically in some man-
ner defined by the model. In the standard quantum jump
model c would evolve deterministically and smoothly
apart from the occasional jump, while in the QSD model,

FIG. 1 (color online). (a) As a function of efficiency �, we
plot: (red dashed) E½ðh�̂xiSÞ2� for the SAID unraveling, large �
limit; (solid blue) E½ðh�̂yiYÞ2 þ ðh�̂ziYÞ2� for the Y-homodyne

unraveling, in the large � limit; (green dot-dashed) E½ðh�̂xiSÞ2�
for the X-homodyne unraveling from simulations with � ¼ 5�.
(b) SS;Yð�Y; �SÞ is plotted with the blue shaded regime (S > 1)
representing when the experiment would rule out all theories of
objective atomic state reduction. (c) is the same as (b) with SAID
replaced by X-homodyne detection and � ¼ 5� for both un-
ravelings. (d) The efficiency required for X and Y homodyne to
have S > 1, as a function of �=�. For more details see text.
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for example, c would evolve nondeterministically and
nonsmoothly at all times. Once the system has reached
equilibrium it will be described by a stationary ensemble
f~�O

c g as described earlier.

Now under the above OPDM assumption, the stationary
ensemble f~�S

xg realized by Alice’s SAID scheme must be
merely a coarse-graining of f~�O

c g. That is, there must exist

a conditional probability distribution }ðxjc Þ such that
8 x, ~�S

x ¼
R
d�ðc Þ}ðxjc Þ~�O

c . The same statements

hold for the Y-homodyne ensemble f~�Y
ðy;zÞg, mutatis mutan-

dis. Thus from the arguments rehearsed earlier, we can
derive the EPR-steering inequality Eq. (3), where the value
of SS;Y depends only upon the efficiencies.

Experimentally, the quantity SS;Yð�S; �YÞ could be mea-
sured as follows. In any given run, Alice randomly chooses
to implement either the SAID or the Y-homodyne monitor-
ing of the atomic fluorescence. After some randomly chosen
time T � ��1, Bob halts the experiment (so that no further
light reaches Alice), and immediately reads out the state of
the atom. More particularly, he randomly measures either
�̂x, �̂y or �̂z. Alice reveals to Bob which monitoring

scheme she performed, and the parameters (x in case 1,
and y, z in case 2) of her conditioned state for the atom at
time T, which she can determine at her leisure from her
measurement record using the above quantum trajectory
theory. Bob then stores the results of his measurements in
different ‘‘bins’’ for different values of x (in case 1) or y, z
(in case 2). He can then calculate, for example, the first term
in Eq. (3) by first determining the average of his measure-
ment of �̂x in each bin, then squaring it, then averaging over
all bins, weighted by the number of entries in each bin.

Note that Bob does not have to put any trust in the state
parameters that Alice reports; they are merely labels for his
bins. Nevertheless, for sufficiently fine binning, if Alice
really can implement the above detection schemes, we
would expect the result of Bob’s averaging procedure
to agree with the ensemble averages E½ðh�̂xiSÞ2� and
E½ðh�̂yiYÞ2 þ ðh�̂ziYÞ2� computed above. If the results

violate the inequality (3), then the experiment would
have proven that the initial assumption, that there exists
an OPDM for the atom, must be wrong. In Fig. 1(b) we plot
SS;Yð�Y; �SÞ, and see that the EPR-steering inequality (3)
is violated in the blue shaded regime. In particular, if
�Y ¼ �S ¼ �, one could prove that quantum jumps are
detector-dependent with � * 0:58. This is the main result
of this Letter.

Achieving � * 0:58 is still very challenging experimen-
tally. One might hope that choosing a different pair of
unravelings, or using a better EPR-steering inequality,
could substantially lower this requirement. This is not the
case, as we now show. If �Y þ �S � 1 then it would be
possible for a hypothetical observer to implement simulta-
neously the SAID and the Y-homodyne monitorings,
giving rise to a doubly conditioned ensemble f~�SþY

ðx;y;zÞg.
This ensemble has exactly the right properties to be an

OPDM ensemble f~�O
c g, since coarse graining by ignoring

the Y conditioning would give f~�S
xg and vice versa. Thus to

disprove all OPDMs we clearly need �Y þ �S > 1. That
is, the necessary condition is �> 0:5, scarcely less
onerous than the sufficient condition of � * 0:58.
X- and Y-homodyne detection.—In practice, photon

counters (at least fast ones, as required here) are less
efficient than the photoreceivers used for homodyne
detection [9]. The SAID scheme has the additional chal-
lenges of spectral resolution, and feedback much faster
than the atomic lifetime ��1. Also, the above analysis is
valid only in the limit �=� ! 1. For these reasons we
now consider replacing the SAID scheme by X-homodyne
detection, and we keep �=� finite. Although the
X-homodyne scheme does not confine the conditioned
system state to the x axis (as in the SAID unraveling) it
does tend to do so [9,12]. Thus we expect that for a high
enough efficiency we could violate the same EPR-steering
inequality (3), but with ‘‘S’’ replaced by ‘‘X’’. The quan-
tum trajectories for the X- and Y-homodyne schemes are
obtained by adding Eq. (8) to Eq. (4), with the LO phases
� ¼ 0 and �=2, respectively. Numerical simulations of
SY;Xð�Y; �XÞ are shown in Fig. 1(c) for � ¼ 5� and
yield a violation (blue shaded regime) for � * 0:73.
Furthermore this is the critical efficiency for all �>�,
as shown in Fig. 1(d).
General diffusive unravelings.—With two homodyne

schemes of efficiency � the same reasoning as earlier
implies that a necessary condition for proving the subjec-
tivity of quantum unravelings is �> 1=2. Now if one can
measure the X and Y quadratures then typically one can
measure any quadrature, and one might think that being
able to choose between say N different quadratures would
make it easier to demonstrate EPR steering, as the obvious
necessary condition would be�> 1=N. In fact,�> 1=2 is
still necessary, as shown in Ref. [20].
To conclude, the original notion of quantum jumps, from

almost 100 years ago, is that atoms radiate via an objective
stochastic process. Although quantum trajectory theory
developed in the early 1990s asserts that there can be no
detector-independent pure-state atomic dynamics—
regardless of the nature of jumps (or diffusion) proposed—
no experiment has ever been done to rigorously test this
assertion. With the experimental tests we have proposed
here, it should be possible to rule out all such objective
models, proving finally that dynamical quantum jumps are
indeed detector dependent.
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