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We show that one-dimensional quasiperiodic optical lattice systems can exhibit edge states and

topological phases which are generally believed to appear in two-dimensional systems. When the

Fermi energy lies in gaps, the Fermi system on the optical superlattice is a topological insulator

characterized by a nonzero topological invariant. The topological nature can be revealed by observing

the density profile of a trapped fermion system, which displays plateaus with their positions uniquely

determined by the ration of wavelengths of the bichromatic optical lattice. The butterflylike spectrum of

the superlattice system can be also determined from the finite-temperature density profiles of the trapped

fermion system. This finding opens an alternative avenue to study the topological phases and Hofstadter-

like spectrum in one-dimensional optical lattices.
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Introduction.—In recent years ultracold atomic systems
have proven to be powerful quantum simulators for inves-
tigating various interesting physical problems including
many-body physics [1] and topological insulators [2]. In
comparison with traditional condensed matter systems,
cold-atom systems provide more control in constructing
specific optical lattice Hamiltonians by allowing both tun-
able hopping and trapping potential to be adjusted as
needed; thus, optical lattices populated with cold atoms
offer a very promising alternative avenue to build topo-
logical insulating states [2]. Several schemes exploring
topological insulators with or without Landau levels in
optical lattices have been proposed [3–6]. So far all these
schemes focus on two-dimensional (2D) systems, as
one-dimensional (1D) systems without additional symme-
tries are generally thought to lack topological nontrivial
phases [7].

In this work, we study properties of trapped fermions on
1D quasiperiodic optical lattices and show that these sys-
tems display nontrivial topological properties, which share
the same physical origins of topological phases of 2D
quantum Hall effects on periodic lattices [8]. The quasi-
periodic optical lattices can be generated by superimposing
two 1D optical lattices with commensurate or incommen-
surate wavelengths [9–11], which has led to the experi-
mental observation of Anderson localization of a
noninteracting Bose-Einstein condensate of 39K atoms in
1D incommensurate optical lattices [10]. Motivated by the
experimental progress, one-dimensional optical superlatti-
ces have been theoretically studied [12–16]. For a quasi-
periodic superlattice, the single-particle spectrum is
organized in bands. When fermions are loaded in the
superlattice, the system shall form insulators if the chemi-
cal potential (Fermi energy) lies in the gaps. For the open
boundary system, localized edge states are found to appear
in the gap regimes. The appearance of edge states is a
signature indicating that the bulk states are topological

insulators characterized by a nonzero Chern number. We
show that the topological invariant Chern number can be
detected from the density distribution of a trapped fermion
system, which displays plateaus in the local average den-
sity profiles with positions of plateaus uniquely determined
by the ration of wavelengths of the bichromatic optical
lattice. Through the analysis of universal scaling behaviors
in quantum critical regimes of conductor-to-insulator tran-
sitions, we further display that both the positions and
widths of plateaus can be read out from the finite-
temperature density distributions, which provides us with
an alternative way to study topological phases and a
Hofstadter-like spectrum by using 1D optical superlattices.
We notice that localized boundary states in 1D incommen-
surate lattices have been experimentally observed very
recently by using photonic quasicrystals [17].
Quasiperiodic lattices.—We consider a 1D polarized

Fermi gas loaded in a bichromatic optical lattice [10,11],
which is described by

H ¼ �t
X
i

ðĉyi ĉiþ1 þ H:c:Þ þXL
i¼1

Vin̂i; (1)

with

Vi ¼ V cosð2��iþ �Þ; (2)

where L is the number of the lattice sites, ĉyi (ĉi) is the

creation (annihilation) operator of the fermion, and n̂i ¼
ĉyi ĉi. The hopping amplitude t is set to be the unit of the
energy (t ¼ 1), and V is the strength of the commensurate
(incommensurate) potential with � being a rational (irra-
tional) number and � an arbitrary phase whose effect shall
be illustrated later. Suppose that the nth eigenstate of a

single particle in the 1D lattice is given by jc ni ¼P
iui;nc

y
i j0i, the eigenvalue equation Hjc ni ¼ Enjc ni

leads to the following Harper equation:
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�ðuiþ1;n þ ui�1;nÞ þ V cosð2��iþ �Þui;n ¼ Enui;n; (3)

where ui;n is the amplitude of the particle wave function at

the ith site with Vi the on-site diagonal potential and En the
nth single particle eigenenergy. The ground state wave
function of the N spinless free fermionic system can be

written as j�G
F i ¼

Q
N
n¼1

P
L
i¼1 ui;nc

y
i j0i, where N is the

number of fermions.
The solution to Eq. (3) is closely related to the structure

of the potential Vi. For the incommensurate case Vi ¼
V cosð2��iÞ with irrational �, Eq. (3) is the well-known
Aubry-André model [18], which showed that when V < 2
all the single particle states are extended and when V > 2
all the single particle states are the localized states.
However, for a periodic Vi, all the single particle states
are extended band states according to Bloch’s theorem.
Next we shall consider the commensurate potential Vi with
a rational � given by � ¼ p=q with p and q being integers
which are prime to each other. Since the potential Vi is
periodic with a period q, the wave functions take the Bloch
form, which fulfills uiþq ¼ eikqui, for the lattice under the

periodic boundary condition. Taking uj ¼ eikj�jðkÞ for

jkj � �=q, we have �jþqðkÞ ¼ �jðkÞ. In terms of �jðkÞ,
Eq. (3) becomes

�½eik�jþ1þe�ik�j�1�þVcosð2�jp=qþ�Þ�j¼EðkÞ�j:

(4)

Since�jþq ¼ �j, the problem of solving the Harper equa-

tion, Eq. (4), reduces to solving the eigenvalue equation,
M� ¼ E�, where � ¼ ð�1; . . . ; �qÞT and M is a q� q

matrix. Solving the eigenvalue problem, we get q eigen-
values: E�ðkÞ with � ¼ 1; . . . ; q. Consequently, the energy
spectrum consists of q bands. As an example, the energy
spectrum for a commensurate lattice with � ¼ 1=3 and
L ¼ 99 under periodic boundary condition is given in
Fig. 1(a). For the lattice with an open boundary condition,
the momentum k is no longer a good quantum number.
There appear edge states in gap regimes as indicated by
‘‘star’’ symbols of located at gap regimes in Fig. 1(b). As
shown in Fig. 1(c), these edge states are localized in the left
and right boundaries in contrast to extended states marked
by ‘‘plus’’ symbols of in band regimes.

As the phase � varies from 0 to 2�, the spectrum for a
given � ¼ p=q changes periodically. The position of
the edge states in the gaps also varies continuously with
the change of �. In Fig. 2, we show the spectrum of the
quasiperiodic systems with � ¼ 1=3 and 1=4 versus �
under the open boundary condition. The shade regimes
correspond to the band regimes and the lines between
bands are the spectra of edge states.

Topological invariant.—The appearance of edge states is
generally attributed to the nontrivial topological properties
of bulk systems [2,19]. Next we explore the topological
properties of states under the periodic boundary condition.

The topological property of the system can be understood
in terms of the Berry phase in k space, which is defined as
� ¼ H

Akdk, where Ak is the Berry connection Ak ¼
ih�ðkÞj@kj�ðkÞi and �ðkÞ the occupied Bloch state [20].
Adiabatically varying the phase � from 0 to 2�, we
get a manifold of Hamiltonian Hð�Þ in the space of
parameter �. Similarly, we can define the Berry connection
A� ¼ ih�ðk; �Þj@�j�ðk; �Þi. For eigenstates �ðk; �Þ of
Hð�Þ, we may use the Chern number to characterize
their topological properties. The Chern number is a
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FIG. 1 (color online). Spectrum of Hamiltonian (1) with
� ¼ 1=3, V ¼ 1:5, and � ¼ 2�=3. (a) Energy bands for the
system with 99 sites under periodic boundary conditions.
(b) Eigenenergies in ascending order for the system with 98
sites under open boundary conditions. (c) From top to bottom,
the figures represent the wave functions of states marked by
labels (plus signs for states in bands and stars for states in gaps)
in (b).

FIG. 2. Energies varying with the phase � for systems with
V ¼ 1:5, (a) � ¼ 1=3, L ¼ 98, and (b) � ¼ 1=4, L ¼ 99 under
open boundary conditions.
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topological invariant which can be calculated via C ¼
1
2�

R2�=q
0 dk

R
2�
0 d�½@kA� � @�Ak�. To calculate it, we

need work on a discretized Brillouin zone. Here we follow
the method in Ref. [21] to directly perform the lattice
computation of the Chern number. For the system with
� ¼ 1=3, we find that the Chern number for fermions in
the lowest filled band (with 1=3 filling) is 1, while the
Chern number for states with the second band fully filled
(with 2=3 filling) is �1.

To understand the topological origin of fermions in the
1D quasiperiodic lattices, we explore the connection of the
present model to the well-known Hofstadter problem
[8,22], which describes electrons hopping on a 2D square
lattice in a perpendicular magnetic field, with the

Hamiltonian given by H ¼ �P
hi;jitijĉ

y
j ĉie

i2��ij , where

the summation is over nearest-neighbor sites and the mag-
netic flux through each plaquette given by � ¼P

plaquette�ij. Taking the Landau gauge, the eigenvalue

problem is described by the Harper equation [8]:
�txðc j�1 þ c jþ1Þ � 2ty cosð2�j�� kyÞc j ¼ EðkyÞc j,

where tx (ty) is the hopping amplitude along the x (y)

direction. If we make substitutions of t ! tx, V ! �2ty,

� ! �, and � ! �ky, the current 1D problem can be

mapped to the lattice version of the 2D integer Hall effect
problem. For the latter case, it was shown that when the
chemical potential lies in gap regimes, the Hall conduc-
tance of the system is quantized [23] and the corresponding
Hofstadter insulating phase is a topological insulator char-
acterized by a nonzero Chern number.

Keeping this connection in mind, it is not strange to see
that the energy spectrum of the 1D quasiperiodic system
versus different � has a similar structure as the spectrum of
the 2D Hofstadter butterfly. In Figs. 3(a) and 3(b), we show

the spectrum for the system with phase � ¼ 0 and � ¼
�=4, respectively. The basic structure is quite similar for
different phases except for some minor differences, for
example, the spectrum for � ¼ �=4 is continuous around
E ¼ 0 for � ¼ 0, but separated for � ¼ �=4 [see also
Fig. 2(b)]. The familiar Hofstadter spectrum is actually a
summation over all the 1D spectra with different phases �
from 0 to 2�. Despite the existence of the mapping be-
tween the 1D quasiperiodic system and the 2D Hofstadter
system, we note that the edge modes in the 1D system are
localized and would not be used for dissipationless trans-
port as in high-dimensional systems.
Experimental detection.—In realistic ultracold atom ex-

periments, we need to consider the effect of an external
confining potential; i.e., Vi in Eq. (1) is given by

Vi ¼ V cosð�2�iþ �Þ þ VHði� i0Þ2; (5)

where VH is the strength of the additional harmonic trap
with i0 being the position of trap center. The density
distribution for the trapped system can be calculated via
ni ¼ h�G

F jn̂ij�G
F i with�G

F the ground state wave function.
In Fig. 4, we have shown the local average density distri-
bution of fermions trapped in both commensurate and
incommensurate optical lattices with a harmonic trap.
Here, in order to reduce the oscillations in density profiles
induced by the modulation of potentials, we have defined
the local average density �ni ¼ P

M
j¼�M niþj=ð2Mþ 1Þ,

where 2Mþ 1 is the length to count the local average
density with M � L [24]. After counting on the locations
of plateaus, we find that the heights of plateaus are
completely decided by � with values �nð�Þ ¼ �;
1� �; 2�; 1� 2�; 4�; 1� 4�; . . . , if the values are in
the range of (0,1). The plateaus with �ni ¼ �, 1� � are
the widest ones corresponding to the largest gap regimes in
the butterfly spectrum, while �ni ¼ 2�, 1� 2� correspond

FIG. 3. The butterflylike energy spectra with respect to �
varying from 0 to 1=2 with different phases: (a) � ¼ 0,
(b) � ¼ �=4. Both figures are for the system with V ¼ 2 and
L ¼ 120 under periodic boundary conditions.

FIG. 4 (color online). The local average density profiles for
systems with rational � (a) and irrational � (b). Inserts for both
pictures are the corresponding density profiles. The system is
with 1000 sites, 600 free fermions, V ¼ 1:5, � ¼ 0, and VH ¼
3� 10�5. Here we take M ¼ q for the rational case of (a) and
M ¼ 20 for the irrational case of (b).
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to the smaller gap regimes. The width of plateau is asso-
ciated with the size of gap.

One can also understand the appearance of plateaus
under the local-density approximation (LDA), in which a
local chemical potential is defined as �ðiÞ ¼ �� VHðiÞ,
where VHðiÞ is the harmonic trap potential and � is deter-
mined by

P
in½�ðiÞ; T� ¼ N. The LDA is applicable pro-

vided that the number of fermions is large, and the
variation of the trap potential is slow. Within the LDA,
the local chemical potential �ðiÞ decreases parabolically
away from the center of the trap. When the local chemical
potential lies in one of the gaps, there appear plateaus in the
density profile. The discernible number of plateaus is
related to the size of the energy gaps. For instance, in
Fig. 4, the plateau with n ¼ 1 corresponds to the band
insulator with a completely filled band, which is topologi-
cally trivial with the zero Chern number. For � ¼ 1=3, the
chemical potential passes through two gap regions which
produces two plateaus with n ¼ 1=3 and n ¼ 2=3, whereas
for � ¼ 1=5 the chemical potential passes through four
gap regions which gives four plateaus with n ¼
1=5; 2=5; 3=5; 4=5, respectively. The Chern number can
be obtained from the density by using the Streda formula
[3,25], which is valid when the chemical potential lies

in a gap. From the Streda formula C ¼ @ �nð�Þ
@� , we can get

C ¼ 1;�1 for �ni ¼ �, 1� � and C ¼ 2;�2 for �ni ¼ 2�,
1� 2�.

In principle, all gaps in the spectrum, including the non-
trivial smaller gaps in the butterfly, can be determined via
observing the corresponding plateaus. The widths of pla-
teaus are proportional to the sizes of corresponding energy
gaps. Experimentally, it becomes increasingly harder to
observe these smaller gaps, as the corresponding plateaus
are very narrow,which needs amore precisely experimental
measurement of the density distribution. For the realistic
detection, we need to consider the effect of temperature.
The finite-temperature density distribution can be calcu-

lated via niðTÞ ¼ 1
Z

PNs

n¼1 e
�En=kBTh�n

Fjĉyi ĉij�n
Fi, where

Ns ¼ L!=ðL� NÞ!N! is the number of states, En is the

energy of eigenstate �n
F, and Z ¼ PNs

n¼1 e
�En=kBT is the

canonical partition function [26]. In Fig. 5(a), we display
the local average density profiles at different temperatures.
It is shown that plateaus already become invisible for
T > 0:3t. Despite the fact that the obvious plateaus are
smeared out by temperature fluctuations, we demonstrate
that the position and the width of zero-temperature plateaus
can be uniquelymapped out fromfinite-temperature density
distributions of the trapped optical lattice system, which
fulfill some universal scaling relations [27] near the zero-
temperature phase transition point � ¼ �c:

nð�; TÞ � nrð�; TÞ ¼ Tðd=zÞþ1�ð1=�zÞ�
�
���c

T1=�z

�
; (6)

where n ¼ nðT;�Þ represents the density distribution for
fermions with temperature T and chemical potential �,

nrð�; TÞ is the regular part of the density,�ðxÞ is a universal
function describing the singular part of density near criti-
cality, d ¼ 1 is the dimensionality of the system, � is
the correlation length exponent, and z is the dynamical
exponent. It was shown that z ¼ 2 and � ¼ 1=2 for
the metal-insulator transition of 1D free fermions [27].
From Fig. 5(b), we see that the different curves of

½ �nð�; TÞ � 2=3�=T3=2 intersect at two points. From inter-
secting points, we can determine �c1 and �c2 , and thus the

corresponding gap in the spectrum can be inferred from
�c2 ��c1 . In terms of the scaled chemical potential ~� ¼
ð���cÞ=T, curves for different temperatures collapse into
a single one as shown in the inset of Fig. 5(b).
In order to connect to the real experiment in cold atoms,

we refer to the parameters in Ref. [28] in which 40K atoms
were used in an optical lattice with spacing a ¼ 413 nm,
the deep of the potential V0 ¼ 5ER, and the recoil energy
ER ¼ 45:98@ kHz; thus, the hopping magnitude t ¼
0:066ER ¼ 3:035@ kHz. Correspondingly, the temperature
T in Fig. 5 in unit t=kB, where kB is the Boltzmann
constant, is of the order of 10 nK; e.g., T ¼ 0:1 corre-
sponds to 2.3084 nK.
Summary.—In summary, we explored the edge states and

topological nature of Fermi systems confined in 1D optical
superlattices. Our study reveals that the topological invari-
ant can be detected from plateaus of density profiles of the
trapped lattice systems. Our results also clarify the con-
nection of 1D superlattice systems to 2D Hofstadter sys-
tems and will be useful for studying topological phases and
observing the Hofstadter spectrum by using 1D optical
lattices.
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FIG. 5 (color online). (a): Local average density profiles for
systems with different temperatures. Insert: Enlargement of the
plateau area. (b): Scaled local average density profiles vs �ðiÞ at
different temperatures. Insert: The universal function around
critical point �c2 for the corresponding system. The system is

with 1000 sites, 600 free fermions, V ¼ 1:5, � ¼ 1=3, � ¼ 0,
and VH ¼ 3� 10�5.
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Note added.—Recently we became aware of the
experiment for the observation of edge states in 1D quasi-
crystals [17].
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