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Among the distinctive features of quasicrystals—structures with long-range order but without period-

icity—are phasons. Phasons are hydrodynamic modes that, like phonons, do not cost free energy in the

long-wavelength limit. For light-induced colloidal quasicrystals, we analyze the collective rearrangements

of the colloids that occur when the phasonic displacement of the light field is changed. The colloidal

model system is employed to study the link between the continuous description of phasonic modes in

quasicrystals and collective phasonic flips of atoms. We introduce characteristic areas of reduced

phononic and phasonic displacements and use them to predict individual colloidal trajectories. In

principle, our method can be employed with all quasicrystalline systems in order to derive collective

rearrangements of particles from the continuous description of phasons.

DOI: 10.1103/PhysRevLett.108.218301 PACS numbers: 82.70.Dd, 61.44.Br

Quasicrystals are structures with long-range positional
order but they do not have a unit cell which repeats in space
[1,2]. Therefore, they possess rotational point symmetries
that are not allowed in conventional periodic crystals.
Another property that does not exist in classical crystals
are the so-called phasons. They cause correlated rearrange-
ments of atoms and are usually described in a hydrody-
namic theory by a continuous mass density [3]. Like
phonons, phasons are hydrodynamic modes that do not
cost free energy in the long-wavelength limit. Apart from
the continuous hydrodynamic description, there is a second
way to delineate phasons. Especially in an atomic or tiling
model, phasonic flips, i.e., the correlated jumps of atoms to
new sites, are also referred to as phasons. The features of
such collective flips are still a main topic of research and
intensively discussed in the field [4].

The diffusive dynamics of phasonic modes influences
the properties of a quasicrystal and can be detected in
scattering experiments (for a recent review see, e.g., [5]).
However, details of the microscopic motion of atoms due
to phasonic modes are usually not resolved. There are only
a few experiments which explore phasonic dynamics with
atomic resolution. For example, transmission electron mi-
croscopy of an Al-Cu-Co decagonal quasicrystal revealed
rearrangements of atoms due to phasonic excitations [6]. It
was also observed that phasonic flips usually are strongly
correlated [7]. Furthermore, strain relaxation that leads to
the formation of a decagonal quasicrystal in an Al-Cu-Co-
Si system is accompanied by complex collective rearrange-
ments of atoms [8]. In general, phasonic modes contribute
to thermal vibrations and thereby are important for the
thermal properties of a quasicrystal. With the help of a
dark-field scanning transmission electron microscopy with
atomic resolution, thermal vibrations were measured in
a decagonal Al72Ni20Co8 quasicrystal revealing the

importance of phasonic contributions [9]. The microscopic
properties of phasonic strain relaxation were also studied
in a nonlinear photonic quasicrystal [10].
However, phasonic displacements in the continuum pic-

ture and collective phasonic flips of atoms are usually
employed as two independent descriptions of phasons. In
this Letter, we present a method that links both pictures.
Many properties of conventional periodic crystals can be
deduced from a single unit cell, which does not exist in
quasicrystals. Nevertheless, we are able to define charac-
teristic areas for phononic and phasonic displacements. We
demonstrate that each particle trajectory accompanying a
phasonic displacement can be predicted by mapping it onto
these areas.
Colloidal particles are widely used as model systems of

statistical mechanics; e.g., to study crystallization, phase
ordering, and dynamics in external fields [11]. Since col-
loids in laser fields are driven into the direction of highest
light intensity [12], one can induce complex structures in a
charge-stabilized colloidal suspension [13]. For example,
light fields created by five interfering laser beams enforce
quasicrystalline ordering of colloids [14–17]. Now, one can
realize each phasonic displacement in the light interference
pattern by tuning the phases of the laser beams appropri-
ately (see also [16]). In the following, we use such pha-
sonic displacements to explore the corresponding
rearrangements or phasonic flips of our colloidal model
atoms in the light-induced colloidal quasicrystal.
In case of five interfering laser beams, the light field

creates an external potential with decagonal symmetry
[14,18]

VðrÞ ¼ �V0

25

X4
j¼0
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cos½ðGj �GkÞ � rþ�j ��k�: (1)
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Here Gj ¼ ð2� cos½2�j=5�=aV; 2� sin½2�j=5�=aVÞ are

the wave vectors projected onto the xy plane, aV is the
length scale of the potential, and �j are the phases chosen

according to [3]

�j ¼ u �Gj þ w �G3j mod 5; (2)

such that u ¼ ðux; uyÞ is a phononic (i.e., a conventional)

displacement and w ¼ ðwx; wyÞ is the phasonic displace-

ment. We will apply a phasonic drift in order to analyze the
resulting colloidal rearrangements. In the following, we
denote a potential with a phasonic displacement w by
VwðrÞ. Furthermore, we assume that the colloids are always
located in local minima, which we determine by a gradient
descent method. To test this assumption, we have also
performed Brownian dynamics simulations. Expectedly,
for large ratios of potential strength to temperature,
V0=ðkBTÞ, slow phasonic drift velocities, and only weak
colloidal interactions, we observe exactly the same behav-
ior as when we follow the minima directly.

Figure 1 and the movies in the Supplemental Material
[19] show the positions of colloids when a phasonic drift is
applied; i.e., when the phasonic displacement changes at a
constant rate in time. The snapshots for a phasonic drift in
the x direction [Fig. 1(a1)] and for a drift in the y direction
[Fig. 1(b1)] illustrate the resulting complexity of the col-
lective movement patterns of the colloids. While it is hard
to recognize the correlations between the phasonic flips by
employing Delaunay triangulations [see right-hand side of
graphs 1(a1) and 1(b1) in Fig. 1], a better insight into the

collective dynamics is obtained by studying single trajec-
tories. As Figs. 1(a2) and 1(b2) demonstrate, particles
move in lanes. Whereas particles in the same lane proceed
on average in the same direction, particles in neighboring
lanes might move in the opposite direction. For a phasonic
drift in the x direction, the colloidal particles either move
along straight paths in the þx direction or along zigzag
paths in the �x direction [see Fig. 1(a2)]. For a phasonic
drift in the y direction, most particles follow zigzag tra-
jectories in theþy direction, but a few colloids move along
stretched zigzag paths in the �y direction [Fig. 1(b2)].
The last two columns of Fig. 1 show detailed snapshots

of a single colloid in the decagonal potential landscape
with a phasonic drift in the x direction. Depending on the
starting position, the colloid either follows a straight path
in the þx direction [Figs. 1(c1)–1(c4)] or a zigzag path in
the �x direction [Figs. 1(d1)–1(d4)]. In both cases, the
colloid hardly moves while it is sitting in a local minimum.
When this minimum disappears at a certain phasonic dis-
placement, the colloid slides into a new minimum. It stays
there until a phasonic displacement is reached where the
new minimum vanishes as well and the colloid has to slide
again.
Interestingly, up to a displacement of the whole system,

the potential and the position of the colloid repeat after a
certain phasonic displacement. For example, the position
of the colloid with respect to the potential landscape in
Fig. 1(c4) corresponds to the situation in Fig. 1(c3) if the
whole system is displaced in the x direction. Similarly, the
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FIG. 1 (color online). Colloidal particles located in the minima of a potential with decagonal symmetry when a phasonic drift is
applied in the x direction [(a1), (a2), and (c1)–(d4)] and in the y direction [(b1) and (b2)] (cf. movies in the Supplemental Material
[19]). Colloids are plotted in a similar color when they move, on average, in the same direction. (a1) Snapshots for w ¼ ð0:05; 0Þ and
(b1) w ¼ ð0; 0:05Þ (solid circles). The previous positions of the colloids at w ¼ ð0; 0Þ are marked by stars, the future positions by open
circles at (a1) w ¼ ð0:1; 0Þ and (b1) w ¼ ð0; 0:1Þ. The right parts show the Delaunay triangulation for the current and future colloidal
positions by gray solid and blue dashed lines, respectively. Trajectories of the colloids for a phasonic drift from w ¼ ð0; 0Þ (solid
circles) to (a2) w ¼ ð1; 0Þ or to (b2) w ¼ ð0; 1Þ. (c1)–(d4) Single colloids in the decagonal landscape when a phasonic drift in the x
direction is applied. Due to different starting positions, the trajectories in (c1)–(c4) are straight and point in theþx direction, while the
ones in (d1)–(d4) have the zigzag shape and point in the�x direction. First, the colloids are in a local minimum and hardly move [see,
e.g., (c1) and (c2) for the straight path]. However, with increasing phasonic displacement the minimum disappears and the colloids
slide into a newly appearing minimum [see (c2), (c3), (d1), and (d2)].
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zigzag path repeats with a displacement in the�x direction
after the colloid has slid twice [cf. Figs. 1(d2) and 1(d4)].
As a consequence, in order to understand these trajectories,
it is sufficient to study one or two slides of the colloid and
how these slides repeat. In general, as we will show in the
next paragraphs, the trajectory of each colloid can be
deduced from the motion of a colloid close to the origin
in a potential with a small phasonic displacement. In the
following, we will first derive how each colloid can be
mapped onto such a particle close to the origin and then
study its behavior when a phasonic drift is applied.

There are combinations of phononic and phasonic dis-
placements that do not change the potential in Eq. (1). For
example, for all integer numbers n, m, and j ¼ 0; 1; ::; 9
displacements with

�u ¼ ður cos½j�=5�; ur sin½j�=5�Þ;
where ur ¼ 2

5
aVnþ

�
1

5
þ 1ffiffiffi

5
p

�
aVm; and

�w ¼ ðwr cos½3j�=5�; wr sin½3j�=5�Þ;
where wr ¼ 2

5
aVnþ

�
1

5
� 1ffiffiffi

5
p

�
aVm (3)

change all possible differences of phases �j ��k only by

integer multiples of 2� and therefore the potential is not
modified; i.e., Vwþ�wðrþ �uÞ ¼ VwðrÞ. Note while the
phononic and phasonic displacements in Eq. (3) always
occur along the symmetry axes of the potential, they do not
share the same direction, in general. A phononic displace-
ment in the direction � ¼ j�=5 is accompanied by a
phasonic displacement in direction �w ¼ 3� ¼ 3j�=5.
The displacement vectors of Eq. (3) can also be employed
for any mass density distribution or field with pentagonal
or decagonal symmetry if this field only depends on the
phase differences �j ��k as in Eq. (2).

The properties of a colloid in a potential do not change
when the position is displaced by �u and at the same time
the phasonic displacement is altered by �w if �u and �w
obey Eq. (3). Therefore, we can map all colloids onto
particles inside a characteristic area close to the origin in
a potential with only a small phasonic displacement. In the
following, a colloid at a position r in a laser field VwðrÞ is
mapped onto a particle at a reduced position rðredÞ ¼ r�
�u in a potential VwðredÞ ðrðredÞÞ with a reduced phasonic

displacement wðredÞ ¼ wþ�w where �u and �w are

chosen such that rðredÞ and wðredÞ are close to the origin.
Since the displacements in Eq. (3) always act along the
symmetry axes, the reduced position and the reduced pha-

sonic displacement can be chosen such that jrðredÞ � ejj �
ð1þ ffiffiffi

5
p ÞaV=10 and jwðredÞ � ejj � ð1þ ffiffiffi

5
p ÞaV=10 for any

unit vector ej ¼ ðcos½j�=5�; sin½j�=5�Þ with j ¼ 0; 1; ::; 9.

Therefore, rðredÞ and wðredÞ end up in areas that are sur-
rounded by black decagons labeled with an a in Fig. 2. To

understand the behavior of a colloid in a potential with
phononic and phasonic displacements, only the colloids

with reduced positions rðredÞ in potentials withwðredÞ have to
be studied. By numerically investigating all of these re-
duced positions and phasonic displacements, we find the
following: all local minima as possible locations of col-

loids have reduced displacements rðredÞ and wðredÞ that are
within the areas surrounded by the colored lines labeled b
in Fig. 2. The results presented in the next paragraphs are

obtained by analyzing the potential for wðredÞ at positions
rðredÞ within this region because every colloid in a local
minimum can be mapped into it.

The reduced phasonic displacement wðredÞ changes at the
same rate as the phasonic displacement w while inside its
characteristic area and inside the region where local min-

ima exist. However, ultimately wðredÞ reaches one of the
colored solid lines labeled b in Fig. 2(b). These lines were
determined numerically and denote the reduced phasonic
displacements where the potential minimum, in which the
colloid sits, disappears, and therefore, the colloid slides
into another local minimum. We find that the direction of
sliding depends on the direction of the phasonic displace-

ment. If �ðredÞ
w is the direction along the symmetry axes that

is closest to wðredÞ, the old, as well as the new, position of

the colloid are located close to the direction �ðredÞ such that
�ðredÞ
w ¼ 3�ðredÞ. In Fig. 2(a), the possible old reduced

positions are shown by lines labeled b, and the new posi-
tions are outside of the characteristic decagonal at the spots
marked by c. The direction of the jump can be identified by
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FIG. 2 (color online). Area of (a) reduced positions rðredÞ and
(b) reduced phasonic displacements wðredÞ. The borders of the
characteristic area to which all colloids can be mapped are the
black decagons marked with an a. The reduced displacements of
all potential minima, rðredÞ and wðredÞ, lie in the region which is
bordered by the solid colored lines labeled b. A minimum
disappears when it reaches the lines b from inside the region.
A colloid sitting in such a minimum slides from the lines b to the
colored segments c outside the decagon. It is then mapped back
into the characteristic decagonal area in a region bordered by
lines marked with d. With the help of both diagrams, the
trajectory of a particle in response to a phason displacement in
the quasicrystalline potential can be predicted as described in the
text and demonstrated in Fig. 3 for specific examples. All
colored lines in the figure are determined by numerically ana-
lyzing the potential for all possible directions of the reduced
phasonic displacement.
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the color, which we choose to be the same in Figs. 2(a) and

2(b). For example, when wðredÞ reaches the green line
marked by b in Fig. 2(b), the old and the new position
are shown with the same color in Fig. 2(a). Since the new
colloid position is outside of the characteristic area, we

employ �u ¼ � 2
5 ðcos½�ðredÞ�; sin½�ðredÞ�Þ=aV and �w ¼

� 2
5 ðcos½�ðredÞ

w �; sin½�ðredÞ
w �Þ=aV , which is a combination al-

lowed according to Eq. (3). The new rðredÞ and wðredÞ are
located on the colored lines marked by d in Fig. 2. Further
increasing the phasonic displacement w repeats the whole
process described in this paragraph by starting from the
new reduced quantities. Therefore, Fig. 2 allows us to
predict the complete path of a colloid in a potential with
phasonic drift for all possible starting positions and all
possible directions of the phasonic drift.

Figure 3 demonstrates how we employ our method to
predict colloidal trajectories for phasonic drifts in the x or y
directions. The colloid is characterized by its reduced

position rðredÞ and its reduced phasonic displacement

wðredÞ. Usually, the real and the reduced particle position

change in the same way. Only when rðredÞ and wðredÞ are
mapped back onto values closer to the origin, the real
position r is not affected at all. We obtain a colloidal
trajectory by repeating the steps introduced in the previous
paragraph. A detailed description is given in the caption
of Fig. 3. Note that the type of the trajectory depends

on the starting value of wðredÞ. The crosshatched areas in
Figs. 3(a3), 3(b3), 3(c3), and 3(d3) denote all starting
values that lead to the type of trajectory depicted in the
corresponding column of the figure.
Particle trajectories in various quasicrystalline systems

can be predicted by using diagrams like the one in Fig. 2.
For all pentagonal or decagonal quasicrystals, character-
istic areas with decagonal shape exist. In quasicrystals with
other rotational symmetries, they assume suitable polygo-
nal shapes. To obtain the details within the characteristic
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FIG. 3 (color online). Selected trajectories and how they can be predicted by employing the diagrams of Fig. 2 for particles in a
potential with a phasonic drift in the x direction [(a1)–(b3)] and in the y direction [(c1)–(d3)]. Each column describes a trajectory for a
starting condition where in the beginning wðredÞ is within the crosshatched area. The first line [(a1), (b1), (c1), and (d1)] shows the path
of the colloid, the second line [(a2), (b2), (c2), and (d2)], the corresponding reduced positions rðredÞ, and the last line [(a3), (b3), (c3),
and (d3)], the reduced phasonic displacements wðredÞ. First, rðredÞ changes only slightly while the phasonic displacement (either wx or
wy) is increased (see arrows labeled A, A0, A1, or A2). The local minimum that is occupied by the colloid disappears when wðrredÞ

reaches the colored solid border. As a consequence, the colloid slides into another local minimum depicted by the same color (see
labels B, B0, B1, or B2). Since the new rðredÞ is outside the characteristic decagonal area, in the next step (see C, C0, C1, or C2) rðredÞ and
wðredÞ are mapped back such that rðredÞ is close to the origin. Note that the real position r does not change due to this mapping.
Afterwards, all steps are repeated for the new reduced quantities. In the case of the zigzag paths, rðredÞ and wðredÞ end up at their starting
values after two slides (six steps: A1, B1, C1, A2, B2, C2) and in case of the straight path [(a1)–(a3)], after one slide (steps A, B, C). For
some starting positions the very first steps might differ from the following ones; e.g., the steps A0, B0, and C0 shown in (a3) do not
repeat but are followed by the usual steps of a straight path. We present paths (b1)–(b3) and (c1)–(c3) in movies in the Supplemental
Material [19].
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area, the extrema of the field or density distribution inside
the characteristic area have to be analyzed.

In this Letter, we have studied particle trajectories in a
quasicrystalline potential with a global phasonic drift. In
the future, we want to apply our method to determine
particle motion that is caused by phasonic modes with
nonzero wavelengths. For example, adatoms on the surface
of a quasicrystal experience a two-dimensional quasicrys-
talline potential (see, e.g., [20]) where phasonic modes are
thermally activated. Our method also applies to intrinsic
quasicrystals; e.g., in atomic systems. Such systems are
characterized by continuous density distributions, which
have to be analyzed instead of an external potential. Real
atoms are located at the most pronounced maxima of the
density distributions. Therefore, if one analyzes the posi-
tions of these maxima within the characteristic area of
reduced position and phasonic displacement, one can pre-
dict phason-induced rearrangements of atoms. One thereby
links collective patterns of phasonic flips to phasonic dis-
placements of a continuous density distribution.
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