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We study the three-dimensional dynamics of a spherical microswimmer in cylindrical Poiseuille flow

which can be mapped onto a Hamiltonian system. Swinging and tumbling trajectories are identified. In 2D

they are equivalent to oscillating and circling solutions of a mathematical pendulum. Hydrodynamic

interactions between the swimmer and confining channel walls lead to dissipative dynamics and result in

stable trajectories, different for pullers and pushers. We demonstrate this behavior in the dipole

approximation of the swimmer and with simulations using the method of multiparticle collision dynamics.
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Microswimmers often have to respond to fluid flow and
confining boundaries, like sperm cells in the fallopian
tubes [1] or pathogens in blood vessels [2]. Artificial
microswimmers constructed with the vision to act as drug-
deliverers in the human body [3] would have to swim in
narrow channels like arteries. Two properties influence the
swimming in microchannels. On the one hand, vortices in
flow reorient the swimming direction of microorganisms.
In simple shear flow, for example, microswimmers tumble
due to a constant flow vorticity [4]. Vortices in Poiseuille
flow in combination with bottom-heaviness due to gravi-
tation lead to stable orientations of swimming algae cells
[5]. On the other hand, microorganisms swimming near
surfaces are trapped by hydrodynamic interactions [6] and
ultimately escape with the help of rotational diffusion [7].
Finally, bacteria in Poiseuille flow show a net-upstream
flux at the walls due to the interplay of confinement
and flow vorticity [8–10]. All these examples show there
is genuine interest in understanding generic features of
microorganisms and artificial swimmers in Poiseuille flow.

In this Letter we demonstrate that the dynamics of a simple
spherical microswimmer in a cylindrical Poiseuille flow can
be mapped onto a conservative dynamical system with the
Hamiltonian as a constant of motion. In analogy to the
oscillating and circling solutions of a mathematical pendu-
lum, we discuss in detail the swinging and tumbling motion
of the microswimmer in 2D and generalize them to three
dimensions. Hydrodynamic interactions with the channel
wall treated in the dipole approximation introduce dissipa-
tion and the microswimmer assumes specific stable swim-
ming trajectories depending on its type as puller or pusher.

We first introduce the geometry. We consider a pointlike
microswimmer that moves with a constant intrinsic swim-
ming speed v0 in a cylindrical microchannel where a
Poiseuille flow is imposed. Using a cylindrical coordinate
system (�, ’, z) with the coordinate basis (�̂, ’̂, ẑ), the
flow is given by vf ¼ vfð1� �2=R2

ChÞẑ, where vf is

the maximum flow speed in the center of the channel
[Fig. 1(a)]. In the absence of noise the equations of motion
for the swimmer position r and orientation ê are given by

d

dt
r ¼ v0êþ vf;

d

dt
ê ¼ 1

2
�f � ê; (1)

where �f ¼ r� vf ¼ 2vf�=R
2
Ch’̂ is the flow vorticity.

The swimmer orientation ê ¼ e��̂þ e’’̂þ ezẑ has the

components

e� ¼ � cos� sin�; e’ ¼ sin�;

ez ¼ � cos� cos�;
(2)

where � 2 f��;�g is the angle in the �-z plane
[Fig. 1(a)] and� 2 f��=2; �=2gmeasures the orientation
in the azimuthal’ direction [Fig. 1(b)]. We note that j�j<
�=2 means upstream and j�j>�=2 downstream orienta-
tion, respectively. In the following we use rescaled units,
�=RCh ! � 2 f0; 1g, z=RCh ! z and t=t0 ! t with t0 ¼
RCh=v0. We also introduce the dimensionless flow speed
�vf ¼ vf=v0, which is the only essential parameter in our

problem.
First, we discuss 2D solutions of Eqs. (1) since they al-

ready capture many aspects of the swimmer dynamics.When
� ¼ 0, the trajectories of the swimmer are restricted to two
dimensions, for example, to the x-z plane, x 2 f�1; 1g.
Because of the translational symmetry in the z direction,
only the equations for x and � are coupled, and Eqs. (1)

give _x ¼ � sin�, _� ¼ �vfx. Eliminating x results in

FIG. 1 (color online). Swimmer in Poiseuille flow. (a) Flow
profile vfð�Þ, cylindrical coordinate system with coordinate

basis (�̂, ’̂, ẑ) and orientation angle � for the projected
orientation into the �-z plane. When e’ ¼ sin� ¼ 0, the motion

is two-dimensional. Note that the sign of vorticity �f changes

when crossing the centerline. (b) Cross section of the micro-
channel. The orientation in ’ direction defines the angle �.
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€�þ �vf sin� ¼ 0; (3)

which is the equation of motion of the mathematical pendu-
lum. Since in this analogy x plays the role of velocity, we can
immediately write down the 2D Hamiltonian

H2D ¼ 1
2
�vfx

2 þ 1� cos� (4)

as a conserved quantity. Figure 2 shows the x-� phase space
and typical trajectories zðxÞ for several flow strengths �vf. In

analogy to the pendulum two swimming states exist. The
flow vorticity rotates the upstream oriented microswimmer
always towards the center. Hence, the swimmer performs a
swinging motion around the centerline of the channel for
H2D < 2 which corresponds to the oscillating solution of the
pendulum [e.g., blue trajectory of Fig. 2(a)]. For small am-

plitudes (� � 1) the swinging frequency is !0 ¼ ffiffiffiffiffiffi
�vf

p
.

When the upstream oriented swimmer moves exactly in the
center of the channel (stable fixed point), the Hamiltonian is
zero. Downstream swimming along the centerline (� ¼ �)
is an unstable fixed point. After a slight disturbance of x ¼ 0,
vorticity rotates the swimmer away from the centerline. The
swimmer performs a tumbling motion (H2D > 2) which
corresponds to the circling solution of the pendulum [green
trajectory of Fig. 2(c)]. At H2D ¼ 2, the separatrix x2 ¼
2ðcos�þ 1Þ= �vf divides the swinging and tumbling region

in phase space [red curves in the phase portraits of Fig. 2].
Since the Poiseuille flow is bounded by the channel walls,
tumbling motion only occurs for �vf > 4 [Fig. 2(c)].

Sufficiently strong vorticity prevents the swimmer from
crossing the centerline.

If we only consider steric interactions of the swimmer
with the channel wall, the swimmer crashes into the wall at
jxj ¼ 1 for H2D > �vf=2, reorients due to the flow vorticity

towards the upstream orientation, and leaves the wall at

� ¼ 0 with Hmax
2D ¼ �vf=2. The swimmer then performs a

swinging motion between the walls with maximum ampli-
tude jxj ¼ 1 for �vf < 4 [green trajectory in Fig. 2(a)]. So

for �vf < 4 the swimmer always enters a swinging motion

oriented upstream, at the latest after contact with the wall,
whereas it tumbles close to the wall for �vf > 4.

To determine the full 2D trajectory in the microchannel,
we solve the dynamic equation for zðtÞ,

_z ¼ �vf½1� xðtÞ2� � cos�ðtÞ: (5)

A careful analysis reveals the following. The swimmer
always moves upstream ( _z < 0), when �vf < 1�H2D, as

shown in Fig. 2(a). When the flow is strong ( �vf > 1þ
2H2D), the swimmer always drifts downstream ( _z > 0),
while swinging or tumbling [Fig. 2(c)]. In between,
mixed up- and downstream segments within one trajectory
[Fig. 2(b)] exist but a net-upstream motion only occurs for
�vf & 1þH2D=2 [blue line in Fig. 2(b)].

For a nonzero azimuthal component, e’ ¼ sin� � 0,

the swimmer trajectory is three-dimensional. Using
Eqs. (1) and (2), we obtain three coupled equations for
�, �, and �,

_� ¼ � cos� sin�;

_� ¼ �vf�� sin� tan� cos�=�;

_� ¼ sin� sin�=�:

(6)

Because of translational symmetry in the z direction and
rotational symmetry about the channel axis, Eqs. (6) do not
depend on z and’. We are able to identify two constants of
motion,

Lz ¼ � sin�; H ¼ 1
2
�vf�

2 þ 1� cos� cos�; (7)

where Lz is proportional to the angular momentum of the
swimmer in the z direction. Because of this constant the

FIG. 2 (color online). Phase spaces x-� (left) and typical
trajectories zðxÞ (right) for several flow strengths �vf. All trajec-

tories start at z ¼ 0. (a) upstream motion, (b) intermediate
motion and (c) downstream motion. Note the various scales
for the z axis. The arrows indicate the orientation vector ê of
the swimmer.

FIG. 3 (color online). �-�-� phase space. The intersection
between Lz ¼ const (orange) and H ¼ const (green) gives the
phase space trajectory. (a) helical-like swinging motion (blue
intersection curve) for Lz ¼ 0:2, H ¼ 1. Black curve: fixed-
point line corresponds to helical trajectories. (b) helical-like
tumbling motion (blue intersection curve) for Lz ¼ 0:2, H¼3.
(c)–(e) sketch of trajectories in the channel for helical motion
(c), helical-like motion (d) and tumbling motion (e).
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sign of � along a swimmer trajectory does not change.
Eliminating � from Eqs. (6), reduces the equations of

motions to @H
@� ¼ � _�, @H@� ¼ _�. So, H again plays the role

of a Hamiltonian for the conjugate variables � and �.
The intersection of the two constants of motion gives the

orbit of the swimmer in �-�-� phase space [Figs. 3(a) and
3(b)]. The stable fixed points of Eqs. (6) lie on the

fixed-point line (�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin�� tan��= �vf

q
, �� ¼ 0), drawn

in Fig. 3(a). Swimming at a fixed-point corresponds to
a helical trajectory [Fig. 3(c)]. The swimmer moves
upstream for �vf < 1= cos��, either on a left-handed helix

(�> 0) or a right-handed helix (�< 0). Closed orbits
around the fixed-point line correspond to swinging motion
around a helical path [Fig. 3(d)] and open orbits [Fig. 3(b)]
are complicated tumbling trajectories [Fig. 3(e)] [11].

Now we consider hydrodynamic interactions of the mi-
croswimmer with the bounding channel wall. The flow
field for neutrally buoyant swimmers in a bulk fluid is in
leading order a force dipole, vðrÞ ¼ p

8��r2
½3ðr̂ � êÞ2 � 1�r̂

where r̂ ¼ r=r and � is the viscosity of the fluid. For
positive dipole strength, p > 0, the propelling apparatus
of the swimmer is typically at the back (pusher), and for
p < 0 in the front (puller). Ref. [6] treated the swimmer
close to a plane wall. The authors showed that hydrody-
namic interactions between the swimmer and the wall lead
to reorientation due to the wall-induced vorticity �W and
to attraction or repulsion. For example, a puller swimming
parallel to the wall is repelled from the wall, while a pusher
is attracted and remains trapped at the wall. When a
sufficiently weak flow is imposed stable orientations �W

for swimming at the wall exist when �Wð�WÞ þ�f ¼ 0

at the wall [12]. Fluctuations will, however, reorient the
swimmer so that it leaves the wall [7,13].

In narrow channels a microswimmer experiences hydro-
dynamic interactions with the wall all the time. To capture
the basic idea, we concentrate on 2D trajectories and
consider instead of the cylindrical channel wall, two par-
allel plates located at x ¼ 1 and x ¼ �1. We calculate the
wall-induced translational and angular velocities using
the force-dipole approximation of Ref. [6] and obtain the
equations of motion,

_x¼�sin��3 �pð3sin2��1Þ
64�

�
1

ð1�xÞ2�
1

ð1þxÞ2
�
;

_�¼ �vfx�3 �psin�cos�

64�

�
1

ð1�xÞ3þ
1

ð1þxÞ3
�
;

(8)

where �p ¼ p=ð�v0R
2
ChÞ is the reduced dipole strength.

Figure 4 shows typical phase space plots generated from
Eqs. (8) for a puller (a) and pusher (b). The swinging
motion of an upstream oriented puller becomes damped
and an attractive fixed point in the center exists. Repelled
by both walls, the puller swims upstream along the center-
line. When the vorticity is sufficiently strong, a swimmer
tumbles with almost constant angular velocity close to a

wall such that h3sin2�� 1i> 0. So the average wall-
induced velocity in the first line of Eqs. (8), _x ¼ � sin�þ
vW , is, for example, hvWi / � �p close to the wall at x ¼ 1.
Hence a puller tumbling near the wall is attracted, on
average, by the wall which is indicated by the green stable
trajectory. All trajectories outside the unstable red limit
cycle or separatrix converge to it. However, due to thermal
fluctuations the puller may cross the separatrix. A pusher
behaves differently, it is attracted by the wall when
oriented upstream in the center of the channel, but it is
pushed away from the wall when tumbling near the wall.
So, all trajectories converge towards a swinging motion
about the centerline, characterized by a stable limit cycle in
the x-� plane.
To test our findings we simulate the motion of a spheri-

cal microswimmer in Poiseuille flow using the method of
multiparticle collision dynamics (MPCD) [14]. It solves
the Navier-Stokes equations on a coarse-grained level and
calculates the flow field around the swimmer in the cylin-
drical microchannel taking into account both hydrody-
namic interactions and thermal noise. In every simulation
step randomly distributed point-particles of mass m at
temperature kBT first move ballistically for a time �t and
then they are sorted into cubic cells of length a. They
interact with all other particles in the cell with a specific
collision rule such that momentum is conserved locally.
The density of the fluid ismNc=a

3 where Nc is the average
number of particles per cell. Depending on the parameters
and the specific collision rule, the viscosity � of the fluid
can be calculated [15,16].

FIG. 4 (color online). Phase space trajectories for a micro-
swimmer in a narrow channel for �vf¼10 for a puller (left) and a

pusher (right). Green and red indicate, respectively, stable and
unstable trajectories. (a) and (b) are obtained from Eqs. (8) and
(c) and (d) from MPCD simulations where we used the parame-
ters B1 ¼ 0:045, � ¼ B2=B1 ¼ �5, RS¼6, RCh¼18, Nc ¼ 30,
�t ¼ 0:02 setting a ¼ m ¼ kBT ¼ 1. Each trajectory was ob-
tained by averaging over 10 individual runs.
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As a model microswimmer we use a spherical squirmer
of radius RS [17,18]. It propels itself by a static, axisym-
metric and tangential velocity field on its surface,
vsðr̂s; êÞ ¼ ðB1 þ ðê � r̂sÞB2Þ½ðê � r̂sÞr̂s � ê�, where r̂s is
the radial unit vector pointing from the center of the
squirmer to the surface. The first mode B1 determines the
swimming speed v0 ¼ 2B1=3 and the second mode
the strength of the force dipole p=� ¼ �4�B2R

2
S, so

B2 > 0 models a puller and B2 < 0 a pusher. The squirmer
has already been used to investigate hydrodynamic inter-
actions between several swimmers [18,19] and between a
swimmer and a wall [20] and has been realized in experi-
ments quite recently [21]. To implement the squirmer in
the MPCD fluid, we follow previous work [19,22]. We use
the method MPC� ATþa [16] and exchange momentum
and angular momentum between the squirmer and the fluid
as described in Ref. [19]. Figures 4(c) and 4(d) show
simulated trajectories for several initial conditions for a
puller (c) and a pusher (d). Our parameters are listed in the
caption of Fig. 4. Although near field effects and the large
extent of the swimmer play a role in the simulated dynam-
ics, the qualitative behavior arising from hydrodynamic
interactions between the swimmer and the cylindrical
channel wall follows the analytical model.

In order to learn about typical relaxation times in which
swimmers approach their stable trajectories, we linearize
Eqs. (8) around the fixed point in the center. We obtain
a harmonic oscillator equation for � with a friction
coefficient � linear in the dipole strength, � ¼
�3p=ð64��R3

ChÞ. For the squirmer, the estimated relaxa-

tion time for swinging motion becomes ��1 ¼
32t0 �R

3=ð9�Þ, where � ¼ B2=B1, �R ¼ RCh=RS, and t0 ¼
RCh=v0 � 1 s is a characteristic time scale for narrow
microchannels. Typical values for � range from �1 to
þ1 for existing microswimmers [23]. So experiments
should be able to observe that microswimmers approach
their stable trajectories within seconds in sufficiently nar-
row channels. Similar estimates apply to the E. coli bacte-
rium where p � 0:8 pN �m was measured recently [7].
Although hydrodynamic interactions between a small mi-
croswimmer and a single wall may play no significant role,
they become important in channels when the channel
diameter is only few times the size of the swimmer.

In conclusion, through a formal mapping onto a
Hamiltonian dynamical systemwe have shown that spherical
microswimmers perform either an upstream oriented
swinging or a tumbling motion when moving in Poiseuille
flow. Hydrodynamic interactions of the swimmer with
the wall stabilizes the upstream orientation of pullers
in the center of the channel whereas a pusher performs stable
oscillations around the centerline with a specific amplitude.

Spherical artificial swimmers with different locomotion
mechanisms have been constructed and studied recently
[24]. Investigating them in microfluidic channels under
Poiseuille flow, the generic features presented in this article
should be accessible in experiments.

We thank A. Bley, R. Goldstein, I. Pagonabarraga,
T. Pfohl, S. Uppaluri, and R. Vogel for helpful discussions
and the Deutsche Forschungsgemeinschaft for financial
support through the research training group GRK1558.

[1] J. A. Riffell and R.K. Zimmer, J. Exp. Biol. 210, 3644
(2007).

[2] S. Uppaluri et al., Biophys. J. (unpublished).
[3] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annu. Rev.

Biomed. Eng. 12, 55 (2010).
[4] B. ten Hagen, R. Wittkowski, and H. Löwen, Phys. Rev. E
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