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Frustrated magnetic interactions in a quasi-two-dimensional h111i slab of pyrochlore lattice were

studied. For uniform nearest neighbor (NN) interactions, we show that the complex magnetic problem can

be mapped onto a model with two independent degrees of freedom, tricolor and binary sign. This provides

a systematic way to construct the complex classical spin ground states with collinear and coplanar

bipyramid spins. We also identify ‘‘partial but extended’’ zero-energy excitations amongst the ground

states. For nonuniform NN interactions, the coplanar ground state can be obtained from the collinear

bipyramid spin state by collectively rotating two spins of each tetrahedron with an angle � in an opposite

direction. The latter model with �� 30� fits the experimental neutron data from SrCr9pGa12�9pO19 well.
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In ordinary magnets, when the temperature is lowered,
the spins freeze into a long-range ordered state or a spin
solid. Some magnets, however, do not order even at low
temperatures [1–8]. The simplest examples are a triangle of
three antiferromagnetic (AFM) spins and a tetrahedron of
four AFM spins. For both systems, any spin configuration
with total zero spin can be a ground state. When such
triangles (tetrahedra) are arranged in a two-dimensional
(three-dimensional) corner-sharing network or kagome
(pyrochlore) lattice, there is an infinite way of covering
the entire lattice with the total-zero-spin building blocks.
As a result, instead of ordering at low temperatures, the
kagome and pyroclore antiferromagnets remain in a spin
liquid state [9–11]. A hallmark of the frustration-driven
spin liquid is the existence of local zero-energy excitation
modes that continuously connect their degenerate ground
states in the phase space of spin configuration and energy:
the so-called weather-vane mode for the kagome [12,13]
and the hexagonal mode for the pyrochlore [14,15]
antiferromagnets.

Some frustrated magnets, however, exhibit nonconven-
tional spin-glass behaviors: field-cooled and zero-field-
cooled hysteresis in the bulk susceptibility[5] and static
short-range spin correlations but with a strongly
momentum-dependent structure factor in neutron scatter-
ing[16]. Among them, SrCr9pGa12�9pO19 [SCGOðpÞ]
[16–24] and Ba2Sn2ZnGa3Cr7O22 [24–27] are particularly
interesting because in both systems the magnetic Cr3þ
(3d3; s ¼ 3=2) ions form a kagome-triangular-kagome
trilayer [28]. Due to the ligand environment and the elec-
tronic orbitals of the Cr3þ ions [19], the spin Hamiltonian
can be described by H ¼ J

P
kSi � Sj þ J0

P
k�tSi � Sj,

where the first sum is over the nearest neighbor (NN) bonds
between the kagome spins, and the second sum is over the
bonds between the kagome and triangular spins [Fig. 1(a)].
The different values of J and J0 are due to their different
bond lengths. Since the discovery of SCGO more than two

decades ago [17], understanding the origin of the non-
conventional spin glass behavior has been a challenging
issue.
In this Letter, by mapping the magnetic interaction

problem onto a model with two independent degrees of
freedom, tricolor and binary sign, we present a methodical
way to construct the complex classical spin ground states
with collinear and coplanar bipyramidal spins for uniform
and nonuniform NN interactions. We also identify ‘‘partial
but extended’’ zero-energy excitations amongst the ground
states that are qualitatively different from the ‘‘local’’ zero-
energy excitations found in spin liquid states of other
frustrating magnets. By comparing the resulting theoretical
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FIG. 1 (color online). (a) The (111) slab of pyrochlore lattice
made up by a kagome-triangular-kagome trilayer realized by the
magnetic Cr3þ ions in SCGO. The numbers are the bond lengths
in Å. The blue (darker gray) and red (lighter gray) spheres
represent kagome and triangular sites, respectively. (b) The
lattice is projected on the ab plane. The red (� C), blue (�
A), and green (� B) arrows represent the three spin directions of
a 120� configuration. (c) Noncoplanar, (d) coplanar, and
(e) collinear classical ground states for an AFM tetrahedron.
In (e), the first figure represents a collinear state and the other
two represent the possible zero-energy modes.
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magnetic scattering to the experimental neutron intensities
obtained from single crystals of SCGOðp ¼ 0:67Þ, the
ratio of J0=J � 0:70ð15Þ was obtained, which is reasonable
for SCGO. We argue that a topological spin glass might be
the ground state of the magnetic lattice.

Elastic neutron scattering measurements on single crys-
tals of SCGOðp ¼ 0:67Þ with total mass of�300 mg were
performed on the cold neutron triple-axis spectrometer
SPINS at the NIST Center for Neutron Research. Energy
of neutrons was fixed to Ei ¼ 5 meV with an energy
resolution of 0.25 meV. A horizontally focusing analyzer
with seven PG(002) blades was utilized to enhance the
intensity of scattered neutrons. The background and nu-
clear contributions to the detector count rate have been
measured at T ¼ 20 K, that is above its spin glass transi-
tion, Tg ¼ 4:5 K, and subtracted from the 1.6 K data.

Let us first consider the perfect quasi-two-dimensional
lattice with J0 ¼ J. We consider two corner-sharing tetra-
hedra or a bipyramidwith a triangular base circled by a solid
line in Fig. 1(a) as a ‘‘molecular’’ unit. As shown in
Fig. 1(b), the bipyramids form a triangular superlattice.
This is crucial because triangles and tetrahedra behave quite
differently; the triangle favors a 120� spin configuration
[Fig. 1(b)], while the tetrahedron favors any configuration
with total zero spin [Figs. 1(c)–1(e)]. The challenge is then
to find spin configurations where every tetrahedron within
the bipyramids and the triangles that link neighboring bi-
pyramids [highlighted by gray triangles in Fig. 1(b)] sat-
isfies its different AFM constraints. One can easily see that
there will be an infinite number of such configurations. One
class of spin configurations that we will focus on first is
those where spins within the bipyramids are collinear. This
approach can be justified by the following argument. Let us
consider the zero-energy excitations possible for noncopla-
nar, coplanar, and collinear spin configurations for an AFM
tetrahedron. For the noncoplanar state, if one spin rotates,
then the other three spinsmust rotate to keep the total spin at
zero [Fig. 1(c)]. For the coplanar state with two pairs of
antiparallel spins, on the other hand, if one spin rotates,
only its counterpart forming one pair can rotate by the same
angle to keep the total spin zero without moving the other
pair [Fig. 1(d)]. Such zero-energy excitations involving
only a fraction (half) of spinswould favor a coplanar ground
state over a noncoplanar state. For the collinear case, the
two pairs are along the same direction, and thus there are
two choices forming a pair [Fig. 1(e)]. Thus, for a single
bipyramid, the collinear structure is favored by entropy. Of
course, the coplanar state also has extensive entropy and
cannot be ignored. After finding the possible collinear
bipyramid spin states for the hybrid lattice, we will show
that the coplanar bipyramid spin states can be generated
from the collinear states.

To find possible collinear bipyramid spin states, let us
start by assigning, for a linking triangle, a 120� spin
configuration with three spins ðA; B;CÞ colored in blue,

green, and red, respectively [Fig. 1(b)]. Since the three
spins belong to three different bipyramids, the three differ-
ent colors can be assigned to the bipyramids to show that
all seven spins within each bipyramid point either parallel
or antiparallel to the assigned spin direction. Since the
bipyramids are connected in a triangular superlattice, the
interbipyramid interactions for the collinear bipyramids
can only be minimized when the colors form a long-rangeffiffiffi
3

p � ffiffiffi
3

p
color structure [see the colored circles in

Fig. 1(b)]. The remaining task is to find the internal spin
state of the collinear bipyramid. This can be done simply
by assigning plus or minus signs to the seven spins forming
a bipyramid with the constraint that each tetrahedron must
have two plus and two minus signs. When such bipyramids
are arranged in the triangular superlattice, only one con-
straint has to be satisfied: the linking triangle must have a
120� spin configuration, i.e., either ðA; B; CÞ or
ð�A;�B;�CÞ, leading to a strict constraint of ferro-sign
bonds for the triangles [Fig. 1(b)]. The spin degrees of
freedom are thus mapped onto two different degrees of
freedom, the long-range ordered tricolor and the disor-
dered binary sign.
Each collinear bipyramid has 18 possible sign states,

nine of which are shown in Fig. 2(a), and the other nine can
be generated by a sign flip. Thus, for a noninteracting N
number of bipyramids, there are 18N possible sign states.
The ferro-sign bond constraint, however, severely limits
the options. To see this, let us assign a sign state (say
state 1) to a central bipyramid and determine all possible
sign states for the 6 nearest neighboring bipyramids of a
hexagonal ring. It is tedious but straightforward to see that
there are only 111 sign states allowed by the ferro-sign
bonds. When the 12 bipyramids on the next large hexago-
nal ring are included, there are 13 238 possible sign states
for the 18 neighboring bipyramids. There is, however, only
one sign state that has a long-range order and is formed
by the three sign states, 1, 6, and 8, as shown in Fig. 3(a). It
is easy to find that there are three similar long-range
ordered sign states formed by the sign states 1 to 9: 1-6-8
[Fig. 3(a)], 2-4-9, and 3-5-7. There is another set of such
three states that can be obtained by the sign flip symmetry.
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FIG. 2 (color online). (a) Nine possible sign states for a
bipyramid, where each tetrahedron has total zero spin.
(b) Collective zero-energy excitations for a bipyramid, involving
all seven spins and satisfying the total zero-spin constraint.
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Once the sign state is determined for the lattice, the actual
spin state can be easily constructed by imposing the color
state on the sign state, as shown in Figs. 3(a) and 3(b).

Let us now turn to the coplanar bipyramid spin states. A
coplanar state can be generated from a collinear state
by rotating the 7 spins in several collective ways [see
Fig. 2(b)]. For the entire lattice, because of the color and
ferro-sign bond constraints, three angles with the same
magnitude ð�;��;��Þ are sufficient to generate a long-
range ordered coplanar state. An arbitrary value of �
corresponds to a coplanar state, which leads to macroscopi-
cally degenerate coplanar states. The collinear spin state
and its resulting coplanar states are continuously connected
with each other in the spin-energy phase space, and the
excitations among them realize the zero-energy excitations
involving all spins—‘‘global’’ spin zero-energy excita-
tions. Different types of zero-energy excitations are also
possible for the long-range ordered collinear and coplanar
bipyramid spin states. As illustrated in Figs. 1(d) and 1(e),
only one pair of the antiparallel spins of a coplanar or
collinear tetrahedron can rotate without moving the other
pair. This kind of excitation leads to ‘‘partial but extended’’
spin zero-energy excitations. An example is the excitations
of an uneven spaghetti shape that propagates along only
one direction in the ab plane, as illustrated by the open
arrows and the dashed line in Fig. 3(b).

If a real material realizes the model of H with J0 ¼ J,
upon cooling the spins would freeze into numerous finite-
size domains with every collinear and coplanar bipyramid

spin state. We generated all possible long-range coplanar
states by the angle �, with a step of 5� for the ‘‘global’’ spin
zero-energy motion starting from the aforementioned three
long-range collinear states, and calculated the square of the
magnetic structure factor jFMðQÞj2 for each state. For
long-range order, IðQÞ / P

QM
jFMðQÞj2�2ðQ�QMÞ,

with two-dimensional reciprocal lattice vectors QM ¼
ðn=3; m=3; 0Þ, where n and m are integers. For short-range
order, however, the two-dimensional delta function
�2ðQ�QMÞ is replaced by the two-dimensional
Lorentzian 1=½�2 þ ðQab �QMÞ2�, where Qab is the ab
component of Q, and � is the inverse of the in-plane
correlation length, �, � ¼ 2�=�. Figures 3(c) and 3(d)

show the calculated IaveðQÞ with �� 20 �A. The IaveðQÞ
produces strong broad scattering at around ð2=3; 2=3; lÞ and
ð1=3; 1=3; lÞ in the ðhhlÞ plane and ð2=3; 2=3; 0Þ in the
ðhk0Þ plane. It also produces additional peaks at ð1; 0; 0Þ
and ð1; 1; 0Þ in the ðhk0Þ plane and along ð1; 1; lÞ in the
ðhhlÞ plane.
Figures 4(a) and 4(b) show contour maps of magnetic

neutron scattering intensities obtained from single crystals
of SCGOðp ¼ 0:67Þ. The experimental data have similar-
ities and differences with the calculated intensities for
J0 ¼ J: their similarity is the strong broad peaks at
ð2=3; 2=3; 0Þ in the ðhk0Þ plane and along the ð1=3; 1=3; lÞ
and ð2=3; 2=3; lÞ directions, while their difference is the
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arrows represent spins in a collinear bipyramid spin state con-
structed by the color and the 1-6-8 sign state shown in (a). Open
arrows are explained in the text. (c),(d) The calculated neutron
scattering intensities for J0 ¼ J in the ðhk0Þ and ðhhlÞ planes.
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FIG. 4 (color online). (a),(b) The experimental magnetic
neutron scattering intensities in the ðhk0Þ and ðhhlÞ planes.
(c)–(f) The calculated elastic magnetic scattering intensities
(c),(d) with � ¼ 30� and (e),(f) with � ¼ 60�.
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lack of scattering at the integer Q points in the ðhk0Þ plane
and along the ð1; 1; lÞ direction in the ðhhlÞ plane. The
discrepancy comes from the fact that SCGO does not
realize the perfect hybrid lattice with J0 ¼ J. Instead, the
lattice is distorted to yield different coupling constants for
the in-plane and out-of-plane interactions, as shown in
Fig. 1(a).

While the tricolor sign state, i.e., the collinear bipyramid
spin state, can no longer be the ground state for the nonuni-
form exchange interactions, here we show that the collinear
state can be a good reference point to construct the ground
state for the nonuniform case. Consider a collinear state for
a single tetrahedron, shown as the filled arrows in the inset
of Fig. 5(a). The ground state for J0 < J can be obtained by
rotating two kagome spins (unfilled arrows) that are anti-
parallel to the triangular spin in opposite direction,
ð�;��Þ. The magnetic energy of the resulting spin con-
figuration becomes E� ¼ J½ð�2 cos�þ cos 2�Þ þ
J0=Jð1� 2 cos�Þ� that is lower than the energy of the
collinear state E�¼0 ¼ �J � J0. The optimal angle, �0,
for a given value of J0=J can be obtained by differentiating
E� with respect to �, which yields J0=J ¼ 2 cos�0 � 1.
Figure 5(a) shows the �0 as a function of 0 � J0=J � 1.
For J0 ¼ J, �0 ¼ 0 represents the collinear state, while for
J0 ¼ 0, �0 ¼ 60� represents the conventional 120� non-
collinear spin configuration. There are only two ways to
rotate the two kagome spins: ð�;��Þ or ð��;�Þ. When
such bipyramids are arranged to form the triangular lattice
of bipyramids as realized in SCGO, due to the strict anti-
ferromagnetic constraint for the linking triangles, each
rotation leads to a single long-range state. A resulting
long-range ordered noncollinear coplanar bipyramid state
with ð�;��Þ is shown in Fig. 5(b) for the special angle of

�0 ¼ 60� for J0 ¼ 0, which is the conventional
ffiffiffi
3

p � ffiffiffi
3

p
structure for kagome planes.

We considered the three long-range ordered collinear
bipyramid states described above and performed the col-

lective � rotation towards the conventional
ffiffiffi
3

p � ffiffiffi
3

p
struc-

ture. In each case, the square of the magnetic structure
factor, jFðQÞj2, was averaged over three crystallographic
domains, and in the end, all three cases were added. The

same two-dimensional Lorentzians used in the uniform J
case to account for the short-range order were multiplied to
jFðQÞj2 to obtain the magnetic neutron scattering
intensities IðQÞ for various values of �, as shown in
Figs. 4(c)–4(f) for � ¼ 30� and 60�. When � increases,
the intensities at the q ¼ 0 points such as ð1; 0; 0Þ, ð0; 1; 0Þ,
and ð1; 1; 0Þ in the ðhk0Þ plane decrease, as well as those at
ð1=3; 1=3; l� 4:2Þ and along the ð1; 1; lÞ direction in the
ðhhlÞ plane. For � ¼ 60�, the ð1=3; 1=3; l� 4:2Þ peak al-
most disappears, which is inconsistent with the data. This
means that �< 60� for SCGO. Because of the �30%
nonmagnetic defects in the single crystals of SCGOðp ¼
0:67Þ, it is not possible to quantitatively compare the data
to the theoretical model. However, qualitative comparison
with the calculated IðQÞ with �� 30ð10Þ� reproduces the
salient features of the data, as shown in Fig. 4. The ��
30ð10Þ� corresponds to J0=J � 0:70ð15Þ, which is a rea-
sonable value for SCGO considering their bond lengths.
In summary, we have presented a systematic approach,

involving a mapping into two degrees of freedom, to deal-
ing with the complex magnetic interactions in the quasi-
two-dimensional h111i slab of pyrochlore lattice. This
method can be used to obtain the ground states not only
for the uniform NN J case but also for the nonuniform J
case. Both uniform and nonuniform J cases have degener-
ate ground states that provide a topological argument for
the nonconventional spin glass state of this system. We
expect such spin glassy behaviors to be enhanced in the
uniform J case because of the existence of the unique
‘‘partial’’ spin zero-energy excitation modes.
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