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We present a comprehensive description of vector chromatography (VC) that includes deterministic and

stochastic transport in one-dimensional periodic free-energy landscapes, with both energetic and entropic

contributions, and identifies the parameters governing the deflection angle. We also investigate the de-

pendence of the deflection angle on the shape of the free-energy landscape by varying the width of the

linear transitions in an otherwise dichotomous potential. Finally, we present experimental results obtained

in a microfluidic system in which gravity drives the suspended particles and, in combination with a bottom

surface patterned with shallow rectangular grooves, creates a periodic landscape of (potential) energy

barriers. The experiments validate the model and demonstrate that a simple, passive microdevice can lead

to VC of colloidal particles based on both size and density. More generally, other fields, e.g., electric,

dielectrophoretic, or magnetic, can play or enhance the role of gravity, potentially leading to a versatile

technique.
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Micro- and nanofluidic systems for chemical and bio-
logical separation have shown great promise and opened
the door for exciting new technologies. A number of
separation systems based on driving suspended particles
through a periodic stationary phase, for example, take
advantage of the unprecedented control on the geometry
and chemistry provided by available fabrication tech-
niques. Driving suspended particles in one-dimensional
(1D) periodic devices has been shown to lead to separation
in a number of systems, ranging from entropic trap arrays
[1] to ratchets based on asymmetric structures [2]. In
addition, the 1D transport of particles past periodic entropy
barriers and, to a lesser extent, energy barriers has received
considerable attention, and rigorous results are available
for the effective mobility of single particles [3–13]. Two-
dimensional separation methods, in which different species
in a sample migrate in different directions, enabling their
continuous fractionation and, in general, providing greater
selectivity than 1D techniques, have also been developed
based on periodic stationary media and have been catego-
rized as vector chromatography (VC) [14]. Notably, VC
can be obtained in planar devices via a straightforward
extension of the aforementioned 1D methods by driving
the particles at an oblique angle with respect to the periodic
direction, thus providing passive transport in the invariant
direction. A representation of such systems is given in
Fig. 1, including the case investigated in recent experi-
ments in which suspended particles are driven through
force fields that are periodic in one of the directions of
the separation plane and invariant in the other [15–17].
Although a case-by-case analysis in the deterministic limit
provided good agreement with these experiments, a
general description is lacking. In this Letter, we present a
comprehensive description of planar VC in terms of the 1D

periodic free energy of the system, including energetic and
entropic contributions, that captures the deterministic and
Brownian limits. This unified description highlights the
key parameters governing the migration angle of different
species and their relevance to the design and optimization
of fractionation devices. We also performed experiments in
a microfluidic system in which gravity drives the particles
and also, in combination with a patterned bottom surface,
creates a periodic landscape of potential energy barriers.
The experiments agree well with the theory, exhibit several
of the qualitative features predicted by the model, show the
separation capability of the device, and introduce a poten-
tially versatile strategy for VC.
Consider the motion of noninteracting Brownian parti-

cles through a potential energy landscape Vðx; zÞ (periodic
in x and invariant in y—see Fig. 1), and driven by a
constant external force F [oriented at an angle �F ¼
arctanðFy=FxÞ], with any vertical component conveniently

incorporated into the potential V. The asymptotic distribu-
tion of particles in a unit cell is given by the steady-state

FIG. 1. Particle driven by a constant external force F in a
fluidic device. The bottom surface, periodic in x and invariant in
y, represents either the applied potential Vðx; zÞ at a given height
z or the topography of the bottom wall. The forcing angle �F, the
average velocity �U, the migration angle �, and the deflection
angle �� are shown.
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solution of the Smoluchowski equation for the reduced
probability density P1ðxÞ [18,19],
0 ¼ r � JðxÞ ¼ r � ½UðxÞP1ðxÞ �DðxÞ � rP1ðxÞ�; (1)

where JðxÞ is the probability density flux, UðxÞ is the
instantaneous particle velocity, and DðxÞ is the diffusion
tensor. In the low Reynolds number limit, the velocity of
the particle is a linear combination of the forces acting on
it, UðxÞ ¼ MðxÞ � ½F�rVðxÞ�, where MðxÞ is the mobil-
ity tensor, which locally satisfies the Stokes-Einstein rela-
tion DðxÞ ¼ kBTMðxÞ. P1ðxÞ is periodic in x, satisfies the
no-flux condition in z, and is normalized,

R
� P

1ðxÞdV ¼
1, where � is the volume of the unit cell. Given P1ðxÞ, it is
straightforward to compute the components of the average
velocity �Ux;y ¼

R
� Jx;yd� [18] and the migration angle � ¼

arctanð �Uy= �UxÞ, which is the relevant parameter in VC.

In planar microfluidic devices, the particles are usually
highly confined in the vertical direction, either geometri-
cally in narrow channels or due to particle-wall interaction
potentials with narrow secondary minima [7,11,13]. In this
case, the ratio between the diffusive time in the vertical
direction and the transit time along a unit cell of the
patterned surface is usually small, and it is valid to assume
fast equilibrium in the cross section [13,20]. This is known
as the Fick-Jacobs (FJ) approximation [3,21–23] and is
analogous to other projection methods that eliminate fast
degrees of freedom [24–26]. In this approximation, it is
possible to write the probability distribution in terms of the
marginal probability density, P ðxÞ, and the equilibrium
conditional distribution in the cross section, �ðzjxÞeq,

P1ðxÞ � P ðxÞ�ðzjxÞeq ¼ P ðxÞQ�1e��Vðx;zÞ; (2)

where� ¼ ðkBTÞ�1 andQðxÞ ¼ R
exp½��Vðx; zÞ�dzdy is

the local partition function. The average velocity in the
invariant direction is then given by the average mobility,
�Uy ¼ ½R‘x

0 hMyyieqP ðxÞdx�Fy, where Myy is the hydrody-

namic mobility and, for any function fðx; zÞ, hfieq ¼R
fðx; zÞ�ðzjxÞeqdzdy is the local equilibrium average

over the cross section. Before we calculate the average
velocity in the periodic direction, we note that the total flux
through any cross section in the periodic direction, J x ¼RR
Jxdydz, is constant in the steady state and therefore

�Ux ¼ ‘xJ x. Integrating Eq. (1) over the cross section
and using the FJ approximation, we obtain

J x ¼ hMxxieq
�
½Fx �F ðxÞ�P � kBT

dP
dx

�
; (3)

where F ðxÞ is the mean force due to the potential, and,
following Zwanzig’s approach to the case without convec-
tion [3], we write it in terms of the local free energy of the
system, AðxÞ ¼ �kBT lnQðxÞ,

F ðxÞ ¼ �
�
@V

@x

�

eq
¼ �@AðxÞ

@x
: (4)

It is clear from Eq. (3) that the total flux in the periodic
direction, and therefore �Ux, have both diffusive and con-
vective contributions. The first convective term shows that,
as expected, a macroscopic anisotropy in the mobilities,
hMxxieq � hMyyieq, could lead to a nonzero deflection

angle, �� ¼ �� �F � 0. Furthermore, the dependence
of hMxxieq on x can also result in �� � 0, independent of

the local isotropy of the mobility tensor, given that the
contribution of the diffusive flux to �Ux [last term in Eq. (3)]
would not vanish in this case [13]. For simplicity, however,
we shall assume that the mobility functions are constant
and equal, Mxx ¼ Myy ¼ M. In this case, we have �Uy ¼
MFy and it is clear that �� � 0 , �Ux � MFx. Moreover,

in this case, the diffusive contribution to �Ux vanishes, and
therefore only F ðxÞ can contribute to a nonzero deflection
angle. Solving Eq. (3) [13,24], we obtain

tan� ¼ tan�F

�
Pe

1� e�Pe

�
Z 1

0
d~xe��A0ð~xÞ Z ~xþ1

~x
d�e�A

0ð�Þ
�
; (5)

where�A0ð~xÞ ¼ �Að~xÞ � Pe~x and ~x ¼ x=‘x. The Péclet
number, Pe ¼ �Fx‘x, compares the magnitudes of con-
vective and thermal transport and is one of the dimension-
less parameters dictating the migration angle. In general,
one can use a characteristic value of the mean force, such
as its maximum value Fmax, and consider the normalized
driving force f ¼ Fx=F max as an independent parameter.
In fact, we shall see below that Pe and f are complemen-
tary for the description of a given system, in that one is the
appropriate parameter to consider when the other diverges.
The other dimensionless number governing the migration
angle is the partition ratioK ¼ expð��AÞ, where�A is
the amplitude of changes in the free energy over a unit cell.
The partition ratio, which in the context of transition-state
theory corresponds to an Arrhenius factor [27], measures
the spatial variations in the equilibrium distribution of
particles in a unit cell.
In Figs. 2 and 3, we investigate the effect of Pe andK on

the deflection angle. We consider a cosine potential,
~Að~xÞ ¼ 1=2 cos2�~x, and a dichotomous potential with
linear transitions (LTD potential), given by regions of

constant potential, ~A ¼ 0 and ~A ¼ 1, and connected
by linear transitions of width � (see the inset in Fig. 3).
The LTD potential in the limit � ¼ 0 corresponds to a
square wave (SW) potential. In all cases, the effect of the
periodic potential is to reduce �Ux [28], resulting in positive
deflection angles (here, we consider �F ¼ 45�; thus,
0� <�� � 45�—see Fig. 1). In Fig. 2, we show the de-
flection angle as a function of Pe for the different poten-
tials. It is clear that the deflection angle decreases with Pe
and increases with K (arrow direction) independent of its
entropic or energetic origin. Figure 2 also shows that, for a
given K and Pe, the smaller the transition region in the
LTD potential the higher the deflection angle, with ��
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converging to the curve for the SW potential as expected
for � ! 0 (arrow direction). In Fig. 3, we plot the deflec-
tion angle as a function of the normalized force and con-
sider the effect of Brownian motion for the different
potentials. Specifically, we compare the deflection angle
obtained at a finite partition ratio for the cosine and LTD
potentials with that in the deterministic limit. [Note that

Figs. 2 and 3 are complementary, in that they allow us to
investigate independent limits, i.e., the SW limit where the
opposing potential force is much larger than the driving
force (f ! 0 and finite Pe) and the deterministic limit
(Pe ! 1 and finite f), respectively.] In all cases, the de-
flection angle decreases with f, analogous to the behavior
observed in Fig. 2 for increasing Pe. Figure 3 also shows
that Brownian motion allows the particles to cross the
potential barriers when f � 1, leading to �� < 45� for
all driving forces. This is in contrast to the deterministic
case, in which particles are locked to move along the
invariant direction and �� ¼ 45� for f � 1. We also in-
vestigate the effect that the transition region � has on the
deflection angle. In the deterministic limit, the deflection
angle for the LTD potential has the simple analytical ex-
pression [20]

tan�

tan�F
¼

�
1� 2�þ f�

f� 1
þ f�

fþ 1

�
¼

�
1þ 2�

f2 � 1

�
;

(6)

and it is clear that larger transition regions lead to larger
deflection angles for any f > 1. The reason is that, as �
increases (at constant f), the particle is deflected for a
longer time as it crosses the potential barrier. Note the
different transit times coming from the regions with �f,
as shown by the corresponding terms in Eq. (6). In the
presence of Brownian motion, we observe the same trend
for large driving forces f, as expected. On the other hand,
as the driving force decreases and barrier hopping is domi-
nated by thermal motion, the behavior reverses and larger
transition regions lead to smaller deflection angles. This
crossover between the deterministic and Brownian cases as
f decreases is consistent with the behavior observed as a
function of Pe in Fig. 2. In fact, the limits Pe	1 and f	1
correspond to the linear response regime, where the reduc-
tion in mobility (and effective diffusivity) is given byR
Qdx

R
Q�1dx [29]. In Fig. 4, we show the effect of

the partition ratio on the deflection angle for the LTD
potential with a given �. Clearly, the deflection angle
increases with the partition ratio, converging to an asymp-
totic curve forK ! 1. This upper limit coincides with the
deterministic limit for a purely energetic potential of mean
force [9]. In terms of separation devices, it is then clear
that, in order to obtain large deflection angles and high
selectivity, it is desirable to operate around f & 1. The
results presented in Figs. 2 and 4 also reveal the role of
temperature in different separation systems [5]. In entropic
trapping, for example, �A / 1=�, which implies that K
is completely determined by the ratio between the avail-
able configurations in the slit and well regions, indepen-
dent of the temperature [8]. On the other hand, both Pe and
f decrease with temperature, which, in Figs. 2 and 4,
corresponds to the system moving along curves of constant
K towards higher discrimination angles, as shown. In
contrast, in the purely energetic case, both �A and f

FIG. 3 (color online). Deflection angle as a function of the
normalized force in the stochastic and deterministic regimes.
The solid lines correspond to the cosine potential, while the
dashed lines correspond to the LTD potential for different
transition regions, and �1 ¼ �2 ¼ 0:5� �. (Curves with the
same � have the same line style.) The inset shows schematics
of the cosine and the LTD potentials.

FIG. 2 (color online). Deflection angle as a function of Pe.
Solid lines correspond to the SW potential with logK ¼
��A ¼ 1, 2, 3, 4, and 6. The dashed lines correspond to the
LTD potential with ��A ¼ 3, transition regions � ¼
0:01; 0:1; 0:2; 0:3; 0:5, and �1 ¼ �2 ¼ 0:5� �. The dotted line
corresponds to the cosine potential. The arrow traverses curves
of increasingK for the SW potential and curves of decreasing �
for the LTD potential. The evolution (a ! b) of a purely
entropic system upon a temperature increase is shown.
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are independent of temperature, and thus increasing the
temperature reduces the partition ratio and the deflection
angle, which corresponds to a system moving down along
vertical lines of constant f in Fig. 4, as shown.

We also performed experiments in a microfluidic system
in which suspended particles [silica (SiO2) particles of 4.32
and 2:14 	m diameter and polystyrene (PS) particles of
4:31 	m diameter] are driven over a periodic array of
parallel grooves etched in glass. (The shallow grooves
are �H ¼ 65 nm deep and 13 	m wide. ‘x ¼ 20 	m.)
The separation between the channel walls is large enough
to neglect confinement effects. Gravity induces periodic
energy barriers due to the presence of the grooves and also
drives the particles (the bottom surface is tilted at an angle
�t). The gravity-induced partition ratio for a particle of
radius a is given by K ¼ expð4=3�a3��g cos�t�H =
kBTÞ, where �� is the buoyant density of the particles
and g is the acceleration due to gravity [13]. In a horizontal
device, the partition ratio of the 4:32 	m silica particles
is at least 2 orders of magnitude larger than that for
either the smaller silica or the lighter polystyrene particles.
Thus, at small tilt angles, the 4:32 	m silica particles
should experience much larger deflections than the other
particles, which would demonstrate that it is possible to
fractionate particles by size or density. In Fig. 5, we
show the measured deflection angle (for �F ¼ 45�) as a
function of the tilt angle (note that, unlike Pe and f, �t is
common to all particles in a given experiment). The thick
solid line corresponds to the LTD potential, with � calcu-
lated from the best fit to the experimental data and repre-
senting an effective transition region in the interaction
between a suspended particle and the bottom grooves.
We obtain good agreement for the 4:32 	m silica particles
with � ¼ 0:10� 0:01 (2:0� 0:2 	m), which compares

well with an order-of-magnitude estimate �zoi ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaþ heÞð�H þ 
�1Þ

q
¼ 1:4 	m obtained by extend-

ing the concept of a zone of influence [30] for a particle
suspended at its equilibrium separation from the wall
(he ¼ 259 nm) and in the vicinity of a step [20]. The
good agreement between the experiments and the analysis
based on the FJ approximation, even at relatively large Pe,
results from the narrow confinement of the particles by the
effective particle-wall interaction potential, which consid-
erably reduces the diffusive equilibration time in the cross
section [20]. In Fig. 5, we also compare the results with the
deterministic curve for the LTD potential with the same
� ¼ 0:10 (thin solid line). The clear deviation from experi-
ments for f � 1 highlights the role of Brownian motion
reducing the deflection angle. The theoretical curves for
2:14 	m silica and 4:31 	m polystyrene particles are
insensitive to the width of the transition region, with dif-
ferences smaller than 2:5�, and the data are compared to
SW potentials, with good agreement. In these latter cases,
the particles easily overcome the energy barriers due to
thermal fluctuations, significantly reducing confinement
effects and leading to small deflection angles.
We presented a unified description of planar vector

chromatography in terms of the 1D periodic free energy
of the system, including both energetic and entropic con-
tributions, that encompasses the deterministic and stochas-
tic limits. This description highlights the key parameters
governing the migration angle of different species. We
performed experiments in which gravity, along with a
bottom surface patterned with slanted periodic grooves,
can be used to separate particles according to their mass,
in agreement with our analysis. More generally, other

FIG. 4 (color online). Deflection angle as a function of the
normalized force for the LTD potential for different partition
ratios. The arrow traverses curves of increasing partition ratio.
�1 ¼ �2 ¼ 0:4. � ¼ 0:1. The dashed curve corresponds to the
deterministic limit. a ! b (a ! c) represents the evolution of a
purely entropic (energetic) system upon a temperature increase.

FIG. 5 (color online). Deflection angle as a function of the tilt
angle. The solid symbols correspond to the experimental data as
indicated. The dashed and dotted lines correspond to the SW
potential. The solid curves correspond to a fit with a LTD
potential using the width of the transition region as a fitting
parameter (� ¼ 0:10). See the Supplemental Material for the
standard deviations and for a video showing a representative
experiment with 4:32 	m silica particles [20].
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fields, e.g., electric, dielectrophoretic, or magnetic, can
play or enhance the role of gravity, potentially leading to
a versatile technique.
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