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We reveal the existence of a new codimension-1 curve that involves a topological change in the
structure of the chaotic invariant sets (attractors and saddles) in generic three-dimensional dissipative
systems with Shilnikov saddle foci. This curve is related to the spiral-like structures of periodicity hubs
that appear in the biparameter phase plane. We show how this curve configures the spiral structure (via the
doubly superstable points) originated by the existence of Shilnikov homoclinics and how it separates two
regions with different kinds of chaotic attractors or chaotic saddles. Inside each region, the topological
structure is the same for both chaotic attractors and saddles.
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Periodicity hubs are spiral-like structures in the bi-
parameter space formed by shrimp-shaped regular re-
gions connected to the focal point of a spiral structure
[1]. Their organizing centers have been recently con-
nected to the existence of Shilnikov homoclinics near a
codimension-2 bifurcation of saddle foci [2].

Shrimp-shaped regular regions were initially studied in
[3.,4] for a Rossler model by using maps that reproduce
many of the observed phenomena. Subsequently, these
regions have been studied in numerous problems both in
maps [5] and in time-continuous systems [1,6], and they
have also been observed experimentally [7,8]. Therefore, it
is an important phenomenon for both theoretical and ap-
plied studies.

Most of these systems are strongly dissipative, and the
contraction of the flow along the stable manifolds is much
greater than the expansion along the unstable manifolds of
the equilibria [9,10]. Thus, these systems accept a qualita-
tive description through one-dimensional maps [4]. The
standard way to obtain such maps is to compute the
Poincaré First Return Map (FRM) of the attracting invari-
ant sets. However, when these sets are just periodic orbits
with period p, only p points appear in the FRM. Some
authors [8] studied that case experimentally and numeri-
cally using the FRM in chaotic regions near the borders of
shrimp-shaped regular regions. Instead, we propose to go
further and to use all the chaotic invariant structures of the
system, either chaotic attractors or chaotic saddles, and not
just the attracting objects. In [2], a curve of change of
topology of the chaotic attractors was detected, but this
curve was not connected to the shrimp structures. In this
Letter, the FRM of all the chaotic invariants is obtained in
the whole biparametric plane—that is, on the chaotic re-
gions and on the shrimp-shaped regular regions. This
method allows us to obtain a natural one-dimensional
biparameter family of maps in the entire periodicity hub
and to show that such a region is completely separated into
two well-defined parts depending on the topological struc-
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ture of its chaotic invariant sets, whether the sets are
chaotic attractors or saddles. Moreover, the results show
that all of the chaotic invariant sets have the same topo-
logical structure on the same regions.
As an example, we use the canonical Rossler system
[11]:
i=—(y+z2), y=x+tay, z=b+zlx—c), (1)
with two bifurcation parameters a and ¢ (we fix b = 0.2).
Figure 1 shows a biparametric Lyapunov spectrum dia-
gram. Colors discriminate between the regions of re-
gular and chaotic dynamics corresponding, respectively,
to a zero and positive maximal Lyapunov exponent
A1. A good choice for the section of the FRM [9] is
S={xy2 ERx=x_,x>0}, with x_=(c—
Vc? — 4ab)/2 (the x coordinate of one of the equilibrium
points). Figures 2(a) and 2(c) show chaotic attractors for
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FIG. 1 (color online). Spirals and “shrimps™ in a 1000 X
1000-grid biparametric Lyapunov diagram of the Rdssler model.
The color bar for the Lyapunov exponent range identifies the
regions of chaotic and regular (black) dynamics. The thick curve
(green) determines a change in the topological structure of the
chaotic invariant set from a unimodal map (left) to a bimodal
map (right). The white rectangle corresponds to the parameter
region, shown in detail in Fig. 6.
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FIG. 2 (color online).

Chaotic invariant sets and their FRM for
different values of the parameter a (b = 0.2 and ¢ = 20). Panels
(a) and (c) correspond to chaotic attractors (¢ = 0.11 and a =
0.2, respectively), while (b) and (d) are chaotic saddles (a =
0.118 and a = 0.149, respectively) with the coexisting stable
periodic orbits (big dots in red).

different values of parameters with different topological
structures [9,11]: (a) corresponds to a ‘‘spiral-shaped
attractor” with a unimodal FRM (right panel), and (c) is
a “screw-shaped attractor” with a bimodal FRM. This
change in the topology of the attractors has also been
observed in an experimental circuit realization of the
Rossler model (Fig. 3), as well as in other models [7,8].

In the regular regions there are no chaotic attractors, but
transient chaos is observed. Figure 4 shows two different
time series with the same values of parameters, but with
two slightly different sets of initial conditions. We can see
how in the first case the trajectory quickly converges to the
stable periodic orbit, while in the second case the trajectory
experiences a transient irregular motion for more time,
until finally it converges to the same periodic orbit. In
any case, transient chaos exists, and it is due to the ex-
istence of a nonattracting chaotic saddle in the phase space
[12]. Using the sprinkler method [13], we may compute the
chaotic saddles, and we may work with them in the same
way as with the chaotic attractors in the chaotic regions.
Figures 2(b) and 2(d) show two chaotic saddles with the
same topological structure as the chaotic attractors in (a)
and (c), respectively.

The thick green curve crossing Fig. 1 has been obtained
by studying the change of topology in the chaotic invariant
sets throughout the chaotic regions and periodicity hubs.

FIG. 3 (color online).

Experimental chaotic invariant sets and
their FRM corresponding to spiral (a) and screw (b) chaotic
attractors.

We denote such a curve as the topological branch adding
bifurcation curve (TBA), and it is a global codimension-1
bifurcation curve. Both chaotic attractors and saddles are
composed of unstable periodic orbits and they are robust;
i.e., most of the unstable periodic orbits that appear within
a shrimp-shaped regular region continue to exist in the
surrounding chaotic region and vice versa. So, the change
of asymptotic behavior of the flow, from chaotic to regular
or vice versa, does not imply a change in the topology of
the chaotic invariant set, and we can check how the TBA
curve smoothly crosses both chaotic and regular regions,
remaining well defined throughout the entire periodicity
hub.

The topological structure of the Rossler chaotic invariant
sets can be described in terms of their topological template
[10]—that is, a branched, two-dimensional manifold such
that all periodic orbits in the invariant set can be projected
onto the template without changing their knot and link
invariants. Practically, the template may be derived using
a FRM of the chaotic set for further examining the knots of
the unstable periodic orbits foliating it. The map allows for
determination of the number of branches of the template in
which the twists and crossings of the unstable periodic
orbits determine the topological template. On the left of
the TBA-bifurcation line, the chaotic invariants (attractors
or saddles) present a 1D unimodal map and, thus, a topo-
logical template with two branches. On the right, the
topological template has a new branch obtained at the
TBA curve, as the map is now a bimodal map. In fact,
we may consider that the system has a complex topological
template with all the possible options, while leaving some
branches ‘“‘closed,”” which gives a simpler template.
(Figure 5 shows the generic template as obtained in [2].)
But at the TBA curve, a new branch is “open” for the
system and new periodic orbits can be obtained.

In the regular regions, the variation of the second
Lyapunov exponent A, points out superstability curves,
i.e., the points in the biparameter plane where stable peri-
odic orbits with a minimum value of A, exist. If we make a
magnification of a shrimp-shaped regular region (see
Fig. 6), the figure shows that the TBA curve passes through
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FIG. 4 (color online). Time series of two slightly different sets
of initial conditions. The first part (blue) corresponds to transient
chaos. In the second part (red), the trajectory has converged to
the stable periodic orbit.
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FIG. 5 (color online). Generic topological template for the
complete parametric plane of Fig. 1. The forbidden branch is
“open” at the TBA-bifurcation line.

the intersection point of the two main superstability curves
of the shrimp. This situation was analyzed in [4], defining a
model made by a biparameter family of one-dimensional
maps. For a map, superstability curves correspond to the
locus of the points in the parameter plane where a periodic
orbit contains a critical point. If we have a bimodal map
and fix a period, we can get two families of superstable
orbits, one for each extremum. We denote s, and s_ as the
superstability curves corresponding to the maximum and
minimum, respectively. These two curves can cross when
there is a doubly superstable orbit (the orbit contains both
maximum and minimum) or when there is coexistence of
two different superstable orbits.

In [1], a curve joining the doubly superstable points was
shown, but it was not related to the change of the topology
of chaotic sets. What we show here is that, in fact, this

curve is an important object, since it divides the whole
parametric plane in regions of different topology both in
chaotic and regular regions. This conclusion has several
remarkable consequences: the main one is that on one side
of the curve we have more periodic orbits because the
chaotic invariant sets need more symbols to describe the
unstable periodic orbits foliated to it. In addition, the global
study of the FRM permits us to relate directly the numeri-
cal results obtained in the differential system with those
obtained in [4] with their simplified map model.

In Fig. 6, the surrounding panels show the FRM corre-
sponding to existing chaotic invariant sets for different
values of the parameters. In the regular region we have
also obtained the map of the stable periodic orbit. We
associate to each orbit a four-letter word (in this ““shrimp,”
the main stable periodic orbits have multiplicity four)
using five symbols: L, A, M, B, and R. We assign a symbol
to each point of the orbit in the FRM according to its
position, such that A and B represent the maximum and
minimum, respectively, and L, M, and R the successive
monotony intervals from left to right (Fig. 2), defined by
the two extrema [14]. For example, in panel 9 of Fig. 6,
LRRB means that the first point is on the left interval, the
next two points are on the right, and the last point is at the
minimum.

The stable periodic orbits with a minimum value of A,
(panels 3, 5, 7, 9, and 11) correspond directly to the
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FIG. 6 (color online).

Magnification of Fig. 1 in the central panel. Surrounding panels show the FRM corresponding to chaotic

invariant sets of different regions delimited by the superstability curves. Red dots point out the FRM of coexisting stable periodic

orbits, with the encircled ones denoting the extrema points.
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FIG. 7 (color online). Top: Sketch of superstability curves in a
shrimp-shaped regular region. Bottom: Sketch of the spiral
structure with the TBA curve passing across the doubly super-
stable (DS) points in the periodicity hub.

definition of superstable orbits for maps. The periodic orbit
in panel 5, where both superstability curves cross, is a
doubly superstable orbit. In addition, the map of the
orbits of the curve s_ (3 and 9) pass through the local
minimum of the FRM, while orbits of the (parabola-
shaped) curve s, (7 and 11) pass through the local maxi-
mum of the FRM.

All orbits of s_ [see Fig. 7(a) for a scheme] to the left of
point 5 have been assigned the word MRRB. As we get
closer to 5, point M is shifted to the left; the orbit at 5
reaches A and orbits to the right of 5 have been assigned the
word LRRB. Similarly, curve s, has two branches origi-
nating at 5; the orbits of the upper branch (ARRM) have the
last point in M, and the orbits of the lower branch (ARRR)
have the last point in R. The window of main periodicity (in
the case of the central panel in Fig. 6, the regular region
above the first period-doubling curve, shown by the dotted
red line) can be divided into six subregions bounded by s,
s_, and the TBA curve. Also, the chaotic attractors in
panels 13 and 1 have the same topology as the chaotic
saddles at the shrimp-shaped regular regions on the right
and left, respectively, of the green TBA curve.

From the analysis of Fig. 6, it follows that the area on the
right of s, must be on the right of the TBA curve, because
the FRM of the chaotic saddle is unimodal on the left of the
curve. In fact, we can see that s is tangent to the curve of
change of topology at point 5 (the doubly superstable

point). This tangent point acts as an organizer of the
subregions described above.

We have shown that the FRMs of both chaotic saddles
and chaotic attractors define a family of unidimensional
maps throughout the region of influence of periodicity
hubs. These maps appear naturally by the intrinsic charac-
teristics of the flow and allow linking the results on maps
with the situations observed in dissipative differential sys-
tems. In particular, we have found numerically that the
curve of change of topology that divides the spiral structure
around the periodicity hub passes through the main doubly
superstable point of each shrimp-shaped regular region. In
addition, relying on the known results about maps, we have
justified that this point is a tangent point between the TBA
curve and 5. This behavior gives us the scheme of the
spiral structures and organization inside the shrimps shown
in Fig. 7: the TBA curve is tangent to the superstable
curves s, at the doubly superstable (DS) points defining
all the “shrimp” structures, and it is perfectly defined in
the entire parametric plane by studying the topological
changes of all the chaotic invariant objects.
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