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By rearrangements of waveguide arrays with gain and losses one can simulate transformations among

parity-time (PT -) symmetric systems not affecting their pure real linear spectra. Subject to such

transformations, however, the nonlinear properties of the systems undergo significant changes. On an

example of an array of four waveguides described by the discrete nonlinear Schrödinger equation with

dissipation and gain, we show that the equivalence of the underlying linear spectra does not imply

similarity of the structure or stability of the nonlinear modes in the arrays. Even the existence of one-

parametric families of nonlinear modes is not guaranteed by the PT symmetry of a newly obtained

system. In addition, the stability is not directly related to the PT symmetry: stable nonlinear modes exist

even when the spectrum of the linear array is not purely real. We use a graph representation of

PT -symmetric networks allowing for a simple illustration of linearly equivalent networks and indicating

their possible experimental design.
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The effect of dissipation or gain on dynamics of a
physical system is a fundamental issue in both classical
and quantum theories. Optics is one of the areas where the
respective models appear naturally and have been explored
for many years in the context of different kinds of dissipa-
tive solitons [1]. One of a number of widely used, funda-
mental, and simple models is an array of waveguides in the
presence of gain and losses [2]. This model is described by
the discrete nonlinear Schrödinger equation (DNLSE),
which is fairly general. Its applications range from the
so-called discrete optics [3] to biophysics [4] and the
mean field theory of Bose-Einstein condensates [5] (for a
broad range of applications of DNLSE, see also [6]).

Recently, great interest in systems with dissipation
and gain was triggered by the discovery of the so-called
parity-time (PT ) potentials, which in a definite range of
parameters obey purely real spectrum [7]. Numerous linear
physical systems for which PT symmetry is of great
relevance have been proposed. Among them we mention
non-Hermitian extension of quantum mechanics [8], elec-
tromagnetic wave propagation in a planar waveguide filled
with active media [9], and beam propagation in optical
lattices [10]. The phenomenon of PT symmetry breaking
has been experimentally implemented in optics [11], where
the equations governing the system were earlier known as
describing a unidirectional coupler, i.e., as a particular
form of the DNLSE [2].

Nonlinear PT -symmetric problems were first posed in
the context of the quantum field theory accounting
for cubic interactions [12] and in guided wave theory
[13]. Being natural for optical applications, the nonlinear
problems received particular attention in the context
of existence of gap solitons [13] and defect modes [14]
in PT -symmetric lattices, as well as in context of the

nonlinear PT -symmetric couplers in stationary [15,16]
and solitonic [17] regimes. More generally, the nonlinear-
ity enriches possible statements of the problem allowing
for including the effects on nonlinear [18], as well as both
linear and nonlinear [19] PT -symmetric potentials.
It is known that by applying a similarity transformation

to a given linear PT -symmetric system, a new system
with real spectrum can be constructed. Thus in [20] new
potentials (not necessarily PT symmetric) with real spec-
tra were constructed using the Darboux transformation,
while in [21] pseudo-Hermitian operators were introduced
and unitary equivalence of PT -symmetric and Hermitian
operators was established. It turns out, however, that pos-
sible mutual reductions of Hermitian, PT -symmetric, and
pseudo-Hermitian linear operators leaving the spectrum
pure real, may introduce dramatic changes in the properties
of the respective nonlinear systems. The analysis of such
changes is the main goal of the present Letter.
More specifically, we show thatPT -symmetric systems

obeying the same linear spectrum may either have one-
parametric families of nonlinear modes or have not. If the
families exist, stability of the modes is essentially different
for different systems, still having the same linear spectrum.
Moreover, stable nonlinear modes may exist beyond the
PT symmetry breaking. For a discrete system consisting
of four waveguides we find that breaking of PT symmetry
can occur in two different ways: the linear spectrum ac-
quires either two complex and two real eigenvalues, or
all four eigenvalues become complex. Finally, we represent
each underlying linear system by a graph, allowing one
to catalog different linearly equivalent PT -symmetric
systems.
We consider an array ofN waveguides (sites) and denote

the field in the nth waveguide by qnðzÞ, where z is the
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propagation distance. If each waveguide have dissipation
or gain described by �n, positive or negative, respectively,
then the field propagation is governed by the DNLSE

i _qn ¼ � XN

m¼1

Knmqm � jqnj2qn � i�nqn; (1)

where _qn ¼ dqðzÞ=dz. Here we admit the existence of
nonlocal coupling among the waveguides, which is de-
scribed by the coefficients Knm ¼ Kmn ¼ K�

nm which
will be treated as entries of the real symmetric matrix K:
K ¼ Ky, where Ky is the Hermitian conjugate matrix.
It is convenient to introduce diagonal matrices G ¼
diagð�1; . . . ; �NÞ and FðqÞ ¼ diagðjq1j2; jq2j2; . . . ; jqNj2Þ,
which describe the dissipation and the nonlinear part of the
system, respectively. Then the system (1) can be rewritten
in the form

i _q ¼ �½Hþ FðqÞ�q; H ¼ Kþ iG: (2)

We search stationary nonlinear modes in the form
qðzÞ ¼ eibzw, where b is the propagation constant, and
w ¼ ðw1; w2; . . . ; wNÞT solves the stationary DNLSE

bw ¼ ½Hþ FðwÞ�w: (3)

Requiring the spectrum of the linear problem bw ¼ Hw to
be real, which is necessary for all linear modes to be
propagating, we impose the constraint

P
N
n¼1 �n ¼ 0.

The matrix H is PT symmetric if it commutes with a
PT operator: ½PT ;H� ¼ 0. Hereafter P is an orthogonal
symmetric (and therefore Hermitian) matrix, and T is
elementwise complex conjugation: T q ¼ q�. Using that
Hy ¼ THT ¼ PHP , we observe that the linear system
i _q ¼ �Hq admits an integral of motion (see also [22])
Q ¼ 1

N hPq;qi, where the inner product is defined as

hu; vi ¼ P
N
n¼1 v

�
nun.

Now we can specify the problem at hand: we consider
the existence and stability of nonlinear modes of
PT -symmetric lattices whose linear parts are related to
each other by similarity transformations, all having the
nonlinearity of the on-site type. Such a statement is natural
for arrays of optical waveguides, since linear links among
them can be arranged by assembling waveguides in dif-
ferent geometries, while the dissipation or gain and the
nonlinearity are the characteristics of each particular wave-
guide, which can be routinely controlled (see also Fig. 3).
One of our main findings is that linearly equivalent
PT -symmetric lattices result in qualitatively different
properties of their nonlinear extensions.

PT -symmetric ‘‘quadrimer’’.—Since the gain and dis-
sipation must compensate each other, the simplest models
allowing for nontrivial distribution of the dissipation have
three or four waveguides. Below we concentrate on a
quadrimer, respectively, setting N ¼ 4. We start by revis-
iting recently considered in [16] system with the next-
neighbor interactions: Knm ¼ �jn�mj;1. The corresponding
matrix, which we denote as H0, is PT symmetric with
respect to

P 0 ¼ 0 �1

�1 0

� �

(hereafter �1;2;3 are the Pauli matrices and 0 is the 2� 2
zero matrix). Depending on particular values of �1;2, three

different situations are possible: (i) unbroken or exact PT
symmetry, when all the eigenvalues ~bn, n ¼ 1; . . . ; 4, ofH0

are real; (ii) broken PT symmetry with two real and two
complex conjugated eigenvalues (notice that this is pos-
sible only if �1 � �2); (iii) broken PT symmetry with all
~bn complex. Thus, the ‘‘phase space’’ (�1, �2) can be
divided into three domains as it is shown in the phase
diagram (PD) of Fig. 1. A feature of the phase diagram is
the existence of the triple points Tj, j ¼ 1; . . . ; 4, where the

three domains touch. The triple points correspond to values

�1;2 for which ~bn ¼ 0 for each n ¼ 1; . . . ; 4. Depending
on how �1;2 change in vicinity of Tj, either the

PT -symmetric phase or one of the PT symmetry broken
phases arise.
If H0 is exactly PT symmetric, then its linear eigen-

states ~w are simultaneously the eigenstates of the corre-
sponding PT operator, i.e., P 0T ~w ¼ ~w (up to irrelevant
phase shift). It is natural to look for nonlinear modes that
possess the same property: P 0T w ¼ w. Therefore we
require w1 ¼ w�

4, w2 ¼ w�
3, which reduces Eq. (3) to

bw1 ¼ w2 þ jw1j2w1 þ i�1w1; (4a)

bw2 ¼ ðw1 þ w�
2Þ þ jw2j2w2 þ i�2w2: (4b)

FIG. 1 (color online). ‘‘Phase diagram’’ (PD) for the linear
quadrimer H0. The dark-gray diamond-shaped domain corre-
sponds to unbroken PT symmetry; in the light-gray domains
there are two real and two complex eigenvalues. In the white
domains all eigenvalues are complex. In panels (a)–(e),
corresponding to the points (a)–(e) in the panel (PD), we show
families of nonlinear modes for: (a) �1;2 ¼ 0:25;
(b) �1 � �0:37, �2 � 1:49; (c) �1 � 1:49, �2 � 0:36;
(d) �1;2 ¼ �1; (e) �1 ¼ 0:1, �2 ¼ 0:95. Stable (unstable) modes

are shown by solid blue (dashed red) lines.
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We represent w1 ¼ W1e
i�, where W1 and � are real.

Then Eq. (4a) gives w2 ¼ W2e
i�, where W2 ¼

W1ðb�W2
1 � i�1Þ is complex, and from Eq. (4b) we

obtain e�2i� ¼ fðW1Þ, where fðW1Þ ¼ ðbW2 �W1 �
jW2j2W2 � i�2W2Þ=W�

2 . If a root of the equation

jfðW1Þj2 ¼ 1 is found, then w1 and w2 can be readily
obtained. Thus nonlinear modes of the quadrimer corre-
spond to the roots of a single equation jfðW1Þj2 ¼ 1 with
respect to one real unknown W1. It is a purely technical
matter to reduce the latter equation to: P8ðW2

1 Þ ¼ 0, where
P8ð�Þ is an eighth-degree polynomial with real coeffi-
cients. Each positive root of P8ð�Þ corresponds to a non-
linear mode of the quadrimer. Since the roots depend
continuously on b, the nonlinear modes constitute continu-
ous families for fixed parameters of the system [23]. As it is
customary, such families can be represented on the plane
(U, b) where U ¼ 1

4

P
4
n¼1 jwnj2 is the total energy flow in

the array. Panels (a)–(e) of Fig. 1 illustrate typical
examples of the families, as well as linear stability of the
modes. When �1;2 belong to the domain of unbroken PT
symmetry [see Fig. 1(a)], one observes four families
branching off from the linear limit, i.e., from the points

b ¼ ~bn, U ¼ 0. In Fig. 1(a) there also exist families
that can not be continued from the linear limit. In panels
(b) and (c) we also address the points that belong to the
domain of unbroken PT symmetry but are situated
closely to the triple points T1;2. In these panels one ob-

serves that after the bifurcation from the linear limit,
all four families rapidly lose stability and two of them
cease to exist if U is sufficiently large. Comparing
panel (a) with panels (b) and (c), we conclude that increase
of �1;2, i.e., approaching the PT symmetry breaking

boundary, is unfavorable for existence and stability of
the modes. However, the most surprising fact is that
stable nonlinear modes can be found in the domains of
broken PT symmetry. Both in panel (d), which addresses
the case when the spectrum consists of two real and
two complex eigenvalues, and in panel (e), i.e., when
all the eigenvalues are complex, one can find stable
modes.

Hermitian quadrimer.—IfH0 is exactly PT symmetric,
then there exists a unitary matrix R, which transforms H0

to a Hermitian matrix HH [21]: RH0R
�1 ¼ HH ¼ Hy

H.
This means that in the linear limit the modes in the array
with gain and losses described by H0 have the same
propagation constants as the modes in the array without
gain and losses, which is described by HH. Hence, for any
�1;2 lying in the domain of unbrokenPT symmetry ofH0,

one can introduce a new DNLSE i _q ¼ �½HH þ FðqÞ�q
[cf. (2)]. Following [21], one can find HH explicitly
and observe that all its nonzero elements are real and
given by HH;12 ¼ HH;21 ¼ h1, HH;14 ¼ HH;41 ¼ h2,
HH;23 ¼ HH;32 ¼ h3, with hj being dependent on �1;2.

By construction, the matrix HH has the same eigenvalues
as H0 for the given �1;2.

Unlike in the PT -symmetric case, the modes of the
nonlinear system with linear part described by HH can be
searched as real valued and either even or odd, i.e., solving
the system bw1 ¼ h1w2 � h2w1 þ w3

1, bw2 ¼ h1w1 �
h3w2 þ w3

2, where ‘‘þ’’ (‘‘�’’) stays for even (odd)

modes. This system is equivalent to a fourth-degree poly-
nomial equation with respect to w2

1. Families of even and
odd nonlinear modes of the Hermitian quadrimer are illus-
trated in Fig. 2. Comparing Figs. 1 and 2, we observe
that even if the matrices H0 and HH have the same eigen-
values, the respective nonlinear systems show considerable
differences in the properties of modes. The most visible
differences are (i) for the Hermitian system, the families
bifurcating from the linear limit never close forming a
saddle-node bifurcation [cf. panels (b) and (c) in Figs. 1
and 2], (ii) the leftmost family of the Hermitian system is
always stable, and (iii) in general, stable nonlinear modes
of Eq. (2) with H0 and HH correspond to different values
of the propagation constant b.
‘‘Generalized’’ quadrimer.—Being of the dissipative na-

ture, the considered above PT -symmetric quadrimer with
linear part described by H0 possesses a property, usually
typical for conservative systems—for the given parameters
of the system (intersite interactionsK and dissipation �1;2)

its nonlinear modes constitute continuous families rather
than appear as isolated attractors. This peculiarity of non-
linear PT -symmetric systems was reported in several
studies [13,16,18,19]. Here we argue that existence of the
continuous families of nonlinear modes is not a typical
property of PT -symmetric systems. Specifically, the non-
linear PT -symmetric systems that admit the families of
the modes appear as ‘‘isolated points’’ in a continuous set
of generic PT -symmetric systems.
To this end we focus on the particular case �1 ¼ �2 ¼

�, i.e., G ¼ diagð�;�;��;��Þ, and introduce an one-
parametric family of matrices H0ð�Þ ¼ K0ð�Þ þ iG with

K0ð�Þ ¼

0 1 0 0

1 0 cos� � sin�

0 cos� sin2� cos2�

0 � sin� cos2� � sin2�

0
BBBBB@

1
CCCCCA
;

and real parameter �. One can ensure that H0ð�Þ
is PT symmetric with respect to

FIG. 2 (color online). Families of nonlinear modes of the
Hermitian quadrimers, whose linear parts are described by
HH, chosen to have the same linear eigenvalues ~bn as the
corresponding PT -symmetric quadrimersH0 illustrated in pan-
els (a), (b), and (c) of Fig. 1.
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P 0ð�Þ ¼ 0 �ð�Þ
�ð�Þ 0

� �
;

where �ð�Þ ¼ cos��1 þ sin��3. For � ¼ 0 the matrix
K0ð0Þ includes only the next-neighbor interactions; i.e.,
H0ð0Þ is merely the linear part of the PT -symmetric
quadrimer studied above (with �1 ¼ �2). The definition
of H0ð�Þ guarantees that its eigenvalues do not depend on
�. But the eigenvectors of H0ð�Þ do depend on �.

Next, using

M ¼ � 0
0 �

� �
;

where � ¼ �3 þ i�2, one can generate a new matrix
H1ð�Þ ¼ MH0ð�ÞM�1, where H1ð�Þ ¼ K1ð�Þ þ iG,

K 1ð�Þ ¼
1 0 �k� kþ
0 �1 k� �kþ

�k� k� cos2� sin2�
kþ �kþ sin2� � cos2�

0
BBB@

1
CCCA;

and k� ¼
ffiffi
2

p
2 sinð�� 	

4Þ. Then H1ð�Þ is PT symmetric

with respect to P 1ð�Þ ¼ MP 0ð�ÞM�1. Notice that the
transformation M does not affect the dissipative compo-
nent iG, which is the same both for H0ð�Þ and H1ð�Þ.
Obviously, the eigenvalues of the matrix H1ð�Þ are the
same as for H0ð�Þ and also do not depend on �.

To give better physical insight into the systemsH0;1ð�Þ,
in Fig. 3 we introduce their weighted graph representation.
The vertexes of graphs correspond to the sites qn while the
edges (lines) represent intersite coupling having weights
equal to the values of the respective matrix elements: e.g., a
line between the vertexes q1 and q2 corresponds to the
elements K1;2 ¼ K2;1 of the matrix K. Each vertex is

supplied by the sign ‘‘þ’’ or ‘‘�’’ corresponding to gain
and dissipation. We notice that the loop edges, which
describe the on-site interactions Kn;n, are not shown as

being not relevant for the present consideration. The graph
representation can be viewed also as indication on how one
could place and connect the waveguides in an experiment
in order to obtain the desirable PT -symmeric quadrimer.
It is worth noting that, say the bottom graph in left column
[i.e.,H0ð	=2Þ] can be reshaped into the line distribution of
the waveguides similar to the graph H0ð0Þ.

Existence of nonlinear modes.—Turning to nonlinear
properties of the arrays, whose linear links are described
by H0;1ð�Þ, let us suppose that the nth eigenstate of the

underlying linear problem bw ¼ H0;1ð�Þw gives rise to a

family of nonlinear modes. Then in the vicinity of the
bifurcation point the nonlinear modes can be described

using the expansion w¼"~wnþoð"Þ, and b ¼ ~bn þ
"2bð2Þn þ oð"2Þ, where " is a small parameter, ~bn and ~wn

are the eigenvalue and the corresponding eigenvector of

H0ð�Þ [or H1ð�Þ]. The coefficient bð2Þn can be readily

found: bð2Þn ¼ hFð~wnÞ~wn; ~w
�
ni=h~wn; ~w

�
ni. This means that

the bifurcation of nonlinear modes is possible only if

Imbð2Þn ¼ 0 for all n (we may conjecture that this condition
is also sufficient for existence of the modes, what was
observed in all our numerical simulations). The coefficient

bð2Þn is easily computable. In Fig. 4 (left panel) Imbð2Þn is
plotted forH0ð�Þ. Only at � ¼ �k ¼ 	k=2 the coefficient

bð2Þn becomes real for all n and the system H0ð�Þ admits
continuous families of nonlinear modes, while for all other
� nonlinear modes bifurcating from the linear limit were
not found.
To understand peculiarity of the values �k we notice

that relation PT ~wn ¼ ~wn ensures that the denominator

in the formula for bð2Þn is real for any �: h~wn; ~w
�
ni¼

hPT ~wn;T ~wni¼ hT ~wn;PT ~wni¼h~w�
n; ~wni. Meanwhile

hFð~wnÞ~wn; ~w
�
ni can have nonzero imaginary part. Then the

FIG. 3. Graph representation of the systems H0;1ð�Þ for ge-
neric and particular values of �. In terms of the optical appli-
cations, the circles with ‘‘þ’’ [or ‘‘�’’] represent waveguides
with gain [or losses], while the lines indicate the directions,
along which the coupling of the field has to be arranged.

FIG. 4 (color online). Imbð2Þn (n ¼ 1; . . . ; 4) vs � for H0ð�Þ
(left panel) and the families of modes of H1ð0Þ for � ¼ 0:25
(right panel).
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reality of the coefficient bð2Þn is ensured by an additional
constraint PT ðFð~wnÞ~wnÞ ¼ Fð~wnÞ~wn, which is satisfied
only for � ¼ �k.

For the system H1ð�Þ the situation is similar—the fam-
ilies of nonlinear modes exist only for � ¼ 	k=2 where

Imbð2Þn ¼ 0 for all n. In the right panel of Fig. 4 we show
families of nonlinear modes of the array whose linear part
is described byH1ð0Þ with � ¼ 0:25. Comparing the latter
panel with Fig. 1(a) (which also corresponds to �1;2 ¼
0:25), we again notice that, whereas the corresponding
arrays have the same eigenvalues in the linear limit, non-
linear modes of those arrays have essentially different
properties.

To conclude, we have considered nonlinear properties of
different PT -symmetric lattices (discrete nonlinear
Schrödinger equations with gain and dissipation), whose
linear parts are related by similarity transformations pre-
serving the spectrum. Such systems describe, in particular,
arrays of optical waveguides with either gain or losses,
which are properly arranged in the space. Alternatively, a
physical realization of the described phenomenon is pos-
sible in arrays of Bose-Einstein condensates loaded in
multiwell potentials, provided the atoms are eliminated
from given wells and are condensed in the other wells,
simulating in this way losses and gain.

On the case example of a PT -symmetric quadrimer we
have shown that the spectral equivalence of the underlying
linear systems does not imply similarity of the nonlinear
modes or their stability properties. We have found that the
existence of one-parametric families of nonlinear modes is
not guaranteed by the PT symmetry, and appears as a
peculiarity of a system rather than a general property. It
was also found that the stability of nonlinear modes is not
directly related to the PT symmetry: stable nonlinear
modes exist beyond the PT symmetry breaking threshold.
If the system includes two different dissipative coeffi-
cients, then the ‘‘phase diagram’’ of the PT -symmetric
quadrimer allows for existence of ‘‘triple’’ points, where
three different phases meet. Finally, we have shown that
use of graph representation of PT -symmetric networks
gives straightforward indication on their possible experi-
mental design in optics, and provides graphical illustration
of linearly equivalent networks.
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Sørensen, Opt. Lett. 36, 4566 (2011).

[18] F. Kh. Abdullaev, Y.V. Kartashov, V.V. Konotop, and
D.A. Zezyulin, Phys. Rev. A 83, 041805(R) (2011);
D. A. Zezyulin, Y.V. Kartashov, and V.V. Konotop,
Europhys. Lett. 96, 64003 (2011).

[19] A. E. Miroshnichenko, B. A. Malomed, and Yu. S.
Kivshar, Phys. Rev. A 84, 012123 (2011); Y. He, X.
Zhu, D. Mihalache, J. Liu, and Z. Chen, Phys. Rev. A
85, 013831 (2012).

[20] F. Cannata, G. Junker, and J. Trost, Phys. Lett. A 246, 219
(1998).

[21] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 205 (2002); J.
Phys. A 36, 7081 (2003).

[22] B. Bagchi, C. Quesne, and M. Znojil, Mod. Phys. Lett. A
16, 2047 (2001).

[23] The continuous families of solutions presented herein are
additional to the solutions found in [16] for �1 ¼ �2,
which required that the parameters of the system are
interrelated. These two types of solutions are complemen-
tary in the complete set of possible standing wave solu-
tions in this special case of equal values of the quadrimer
gain or loss parameters.

PRL 108, 213906 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
25 MAY 2012

213906-5

http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1109/3.119519
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1142/S0217984904006809
http://dx.doi.org/10.1142/S0217984904006809
http://dx.doi.org/10.1142/S0217984904007190
http://dx.doi.org/10.1142/S0217984904007190
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1103/PhysRevLett.80.5243
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1063/1.532860
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1088/0305-4470/38/9/L03
http://dx.doi.org/10.1103/PhysRevLett.100.103904
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1103/PhysRevLett.101.080402
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1038/nphys1515
http://dx.doi.org/10.1103/PhysRevD.70.025001
http://dx.doi.org/10.1103/PhysRevD.70.025001
http://dx.doi.org/10.1103/PhysRevLett.100.030402
http://dx.doi.org/10.1364/OL.36.002680
http://dx.doi.org/10.1103/PhysRevA.82.043803
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevA.82.043818
http://dx.doi.org/10.1103/PhysRevE.83.066608
http://dx.doi.org/10.1364/OL.36.004323
http://dx.doi.org/10.1364/OL.36.004566
http://dx.doi.org/10.1103/PhysRevA.83.041805
http://dx.doi.org/10.1209/0295-5075/96/64003
http://dx.doi.org/10.1103/PhysRevA.84.012123
http://dx.doi.org/10.1103/PhysRevA.85.013831
http://dx.doi.org/10.1103/PhysRevA.85.013831
http://dx.doi.org/10.1016/S0375-9601(98)00517-9
http://dx.doi.org/10.1016/S0375-9601(98)00517-9
http://dx.doi.org/10.1063/1.1418246
http://dx.doi.org/10.1088/0305-4470/36/25/312
http://dx.doi.org/10.1088/0305-4470/36/25/312
http://dx.doi.org/10.1142/S0217732301005333
http://dx.doi.org/10.1142/S0217732301005333

