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Charge correlations in lattice gauge calculations suggest that up, down, and strange charges move

independently in the quark-gluon plasma, and that the density of such charges is similar to what is

expected from simple thermal arguments. Here, we show how specific elements of the charge-charge

correlation matrix in the quark-gluon plasma survive hadronization and become manifest in final-state

charge-charge correlation measurements.
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Identifying partonic degrees of freedom in the quark-
gluon plasma (QGP) is a principal goal for the relativistic
heavy-ion programs at the Relativistic Heavy-Ion Collider
(RHIC) and at the Large Hadron Collider (LHC). From the
strong collective flow observed at RHIC, it is clear that the
QGP interacts strongly and behaves like a liquid [1]. The
low viscosity suggests that collisional widths of partons are
similar in magnitude to their energy, so quarks and gluons
are not particularly good quasiparticles. Nonetheless, they
can still serve as the fundamental carriers of charge. Lattice
gauge calculations confirm the picture that up, down, and
strange charges are transported as single charges, in con-
trast to the hadronic world where they are transported in
either charge-anticharge pairs (mesons) or in groups of
three charges (baryons) [2,3]. Insight from lattice calcula-
tions comes from charge-charge correlations,

�ab � hQaQbi=V; (1)

where, within the volume V, Qa is the net number of up,
down, or strange quarks. Here, we consider systems with
zero net charge, otherwise one would subtract terms
hQaihQbi. If each charge carrier had one unit charge and
moved independently, as in a parton gas, the off-diagonal
elements would be zero and the correlation would be

�partongas
ab ¼ �abðna þ n �aÞ: (2)

For example, nu is the density of up quarks and n �u is the
density of anti-up quarks. The nonzero correlation comes
from charges being correlated with themselves. This con-
trasts with a hadronic gas,

�
hadrongas
ab ¼ X

�

n�q�;aq�;b; (3)

where q�;a is the charge of type a on the hadronic species

�. Mesons make the off-diagonal elements negative while
baryons have the opposite effect. Lattice calculations have
provided �ab as a function of temperature, and shown the
transition from a hadron gas to a QGP [2–4] as suggested in
[5]. For temperatures above the critical region, the off-
diagonal elements largely disappear and the magnitude of

the diagonal elements approach 90% of the parton gas
value. In this Letter, we show how �ab from the QGP
phase can be accessed experimentally.
Local charge conservation precludes correlations from

lattice calculations being directly compared to those in an
experiment without extreme assumptions about charge
transport [6]. Strictly speaking, the net charge in the com-
plete volume is fixed and does not fluctuate, whereas lattice
calculations assume a particle sink, i.e., the grand canoni-
cal ensemble. However, charge correlations binned as
a function of a relative coordinate can be analyzed, and
depend on �ab as calculated in a grand canonical
ensemble. For the partonic stage in a heavy-ion collision,
we assume the following form for the binned correlation:

gabð�; �Þ � h�að0Þ�bð�Þi;

� ðna þ n �aÞ�ab

�
�ð�Þ � e��2=2�2

QGP

ð2��2
QGPÞ1=2

�
: (4)

The delta function term represents the correlation of a
charge with itself. The relative coordinate along the longi-
tudinal axis is � ¼ tanh�1ðz=tÞ, and is known as the spatial
rapidity. It is chosen instead of the coordinate z to better
account for the longitudinal expansion, which for a boost
invariant system is vz ¼ z=t. In a boost invariant system,
correlations depend only on the relative spatial rapidity �.

The proper time � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � z2

p
is the time measured by an

observer moving with the fluid from the origin z ¼ t ¼ 0.
The width �QGPð�Þ is frozen in the limit of zero diffusion.

From this point forward, charge and number densities are
per unit �, and from global charge conservation,R
d�gabð�Þ ¼ 0. Since the quarks are relatively light,

ma < T, in the gas limit, �ab would stay roughly constant
during an isentropic expansion of the QGP.
More generally, the strength of the Gaussian in the

expression for gabð�Þ in Eq. (4) is �QGP
ab , which allows

one to compare to lattice calculations. Unfortunately,
measurements are not made before hadronization, but
only afterward, when particles are on their final-state tra-
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jectories. To connect to experiment one must overcome
three challenges: (a) A second wave of quark-antiquark
pairs are created or destroyed at hadronization. (b) Hadrons
are measured—not quarks. (c) One can measure only
momenta, not spatial rapidity. Furthermore, strangeness
violating decays affect the conservation rules.

To overcome (a), one uses the fact that gabð�Þ cannot
change suddenly except at �� 0 due to local charge
conservation. Additionally, the correlation afterward must
integrate to zero. Assuming hadronization is relatively
sudden, the correlation after hadronization should have
the form,

g0HADab ð�Þ ¼ �ð�HAD
ab � �QGP

ab Þ e��2=2�2
HAD

ð2��2
HADÞ1=2

� �QGP
ab

e��2=2�2
QGP

ð2��2
QGPÞ1=2

: (5)

The prime on g0HAD denotes that the correlation of a
particle with itself is subtracted out. The width �HAD

represents the separation of those balancing charges
created or destroyed at, or just after, hadronization and
should be significantly smaller than �QGP. The quantity

�HAD
ab is defined in Eq. (3), and since the yields n� are

measured, �HAD
ab is a known quantity. The form for g0ab in

Eq. (5) comes from freezing the long-range part, while
constraining gab to integrate to zero, or equivalently, en-
forcing g0ab to integrate to ��HAD

ab . Thus, g0abð�Þ depends
on �QGP

ab , which can be taken from Eq. (2) or even directly

from lattice calculations, �HAD
ab , which can be extracted

from measured hadronic yields, and the width �QGP.

For (b) it was shown in [7] how to use g0HAD to generate
correlations between hadronic species,

G�	ð�Þ � h½n�ð0Þ � n ��ð0Þ�½n	ð�Þ � n �	ð�Þ�i; (6)

where the Greek subscripts � and 	 refer to specific
hadronic species. To derive G�	ð�Þ from g0abð�Þ, one

assumes that correlations are distributed thermally
amongst species, i.e.,

hn�ð0Þn	ð�Þi ¼ hn�ð0Þihn	ð�Þie
abð�Þq�;aq	;b ; (7)

where 
ab is a Lagrange multiplier responsible for con-
straining g0ab. Because g

0
ab can be determined from G�	,

g0abð�Þ ¼ ð1=4ÞX
�

G�	ð�Þq�;aq	;b; (8)

one can write g0 in terms ofG, then use Eq. (6) to writeG in
terms of correlations of densities, which uses Eq. (7) above
to ultimately express g0ð�Þ in terms of 
ð�Þ and measured
densities hn�i. In [7] it was shown how to invert the
expression and find 
 in terms of g0 assuming 
 is small.
This led to an expression for G in terms of g0,

G�	ð�Þ ¼ 4
X

abcd

hn�ð0Þiq�;a�HADð�1Þ
ac ð0Þg0HADcd ð�Þ

� �HADð�1Þ
db ð�Þq	;bhn	ð�Þi: (9)

Inserting the expression for g0 in Eq. (5) into Eq. (9), one
sees that G�	ð�Þ between any two hadronic species is

determined by �QGP
ab , the measured yields of hadrons, and

two unknown parameters �QGP and �HAD. One does not

expect significant sensitivity to �HAD since it should be
smaller than the thermal spread, so effectively the un-

knowns in calculating G�	ð�Þ are �QGP
ab and �QGP.

Finally, to overcome (c), the correlations in spatial ra-
pidity must be mapped to those in regular rapidity y ¼
tanh�1ðvzÞ. Thermal smearing in the mapping of
G�	ð�Þ ! G�	ðyÞ and the decays of strange hadrons are

taken into account with a blast-wave model [7]. The blast-
wave model was based on a Gaussian distribution of trans-
verse flow velocities (with a variance of 0:6c) and a fixed
kinetic breakup temperature (120 MeV). Parameters were
set to match mean transverse momenta for pions and pro-
tons measured by the STAR Collaboration at RHIC [8].
After generating correlated pairs with the weights de-
scribed by G�	, the decays of hyperons and neutral kaons

were simulated. The final products along with their weights
were binned to generate G�	ðyÞ. Details of the method can

be found in [7], though the blast-wave model used in this
study is slightly different since it uses a Gaussian profile.
The fit to baryon yields was accomplished by assuming a
chemically equilibrated sample with a temperature of
165 MeV, combined with a suppression factor for baryons
of two thirds to roughly match proton yields measured by
PHENIX [9]. The default calculation assumes that the
density of all quarks during the QGP is 0.85 times the
final-state density of hadrons, and that the density of
strange quarks is 92% that of up or down quarks. This

last assumption effectively sets the default �QGP
ab . Aside

from a factor of the yields, G�	ðyÞ is equivalent to charge-
balance functions that have been studied in depth [10–13]
and measured for a few species [14–16].
The goal of this Letter is to illustrate how G�	ðyÞ is

sensitive to specific elements of �QGP
ab and �QGP. Figure 1

shows how the width of the correlation G�þ�� depends on
�QGP. For pions, roughly two thirds of the correlation

comes from the hadronization component (with a charac-
teristic spread of �HAD, while approximately one third
comes from the QGP component, as expected from entropy
arguments [10]. Conservation of entropy requires that the
number of quarks in the QGP and final-state hadrons are
roughly equivalent, but since hadrons have multiple
quarks, the number must more than double at hadroniza-
tion. In Fig. 1, �HAD was set to 0.2, while results for three
different values of �QGP are shown, the default value of

1.0, along with 0.5 and 1.5. Currently, there are no good
experimental handles on �QGP, so an analysis like this is

required. One can make estimates of the diffusive width
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with crude diffusion models [10]. Such estimates are
* 0:5, but may understate the case since the balancing
charges created at the formation of the QGP may also be
separated due to the tunneling associated with the breaking
of color flux tubes. The tail of the correlation in Fig. 1 is
clearly sensitive to �QGP, but will be difficult to distinguish

unless one has a detector with a wide acceptance in rapid-
ity. The STAR detector at RHIC and the ALICE detector at
the LHC cover ranges of relative rapidity close to 2 units,
which may make the determination of �QGP difficult.

Although the CMS and ATLAS detectors do not have
particle identification for a large rapidity range, they can
identify charges, and cover well over three units of rapidity.
This should be sufficient for determining �QGP at LHC

energies.
To investigate the sensitivity of the correlations to specific

elements of �QGP
ab , several correlations are plotted in Figs. 2–

4. If the diagonal elements are reduced by a factor of 2, the
dip in the p �p correlation disappears, as seen in the middle
panel of Fig. 2. This would be the case if the QGP had half the
expected number of charge carriers. If the ss component of
�QGP were halved while leaving the uu and dd components
unchanged, theKþK� correlation, shown in Fig. 4, becomes
much narrower. This is expected, because in the default case
the hadronization contribution is small, and the correlation is
dominated by the longer-range QGP contribution. This de-
rives from the net number of strange quarks in the QGP being
close to what one expects from an equilibrated hadron gas. If
the QGP contribution is reduced, the hadronization contribu-
tion grows and results in a much narrower correlation.

The off-diagonal elements of �QGP
ab also affect final-state

correlations. As an extreme case, we consider a case where
the QGP is dominated by correlated quark-antiquark pairs.

In that case, there are large off-diagonal elements, and if
the quarks are equally well paired with quarks of all
species, one would expect (assuming isospin symmetry
between up and down):

�QGP
us ¼ �QGP

ds � �ð1=2Þ�QGP
ss ;

�QGP
ud � ��QGP

uu þ ð1=2Þ�QGP
ss :

(10)

For this case of strong off-diagonal elements, both p �p
correlations (lower panel of Fig. 2) and pK� correlations
(lower panel of Fig. 3) are substantially affected.
Observing a charge does not imply observing a unit of
baryon charge since all quarks are matched by antiquarks.
Thus, one does not find a balancing charge far away and the
QGP components to the correlations featuring at least one
baryon nearly vanish.
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FIG. 1 (color online). The correlation for �þ�� scaled by
multiplicity and separated by the QGP and hadronization con-
tributions (upper panel). The tail of the correlation function is
dominated by the QGP portion and is more pronounced for
larger �QGP, as is seen in the lower panel.
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FIG. 2 (color online). Correlations involving other hadronic
species are more effective at separating the QGP and hadroniza-
tion components because the two components might contribute
with opposite signs. Such is the case for the p �p and pK�
correlations shown in the upper panels of Figs. 2 and 3, respec-
tively. The dip in the p �p correlation and the switch of signs in the
pK� correlation only exist if there are competing correlations of
an opposite sign. Proton-antiproton correlations test the idea that
charge production comes in two separate waves because the
hadronization and QGP contributions have opposite signs, as
seen in the upper panel. The middle panel illustrates the sensi-
tivity to reducing the diagonal elements of �QGP

ab by a factor of 2,

and the effect of adding large off-diagonal components as in
Eq. (10) is displayed in the lower panel.
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The correlations G�	ðyÞ provide the means to connect

�ab, measured on the lattice, to observables in heavy-ion

collisions. The four unknown elements of �QGP
ab (using

isospin symmetry) along with the unknown width, �QGP,

can be extracted from an analysis ofG�	, which, for the set

of protons, kaons, and pions, encompasses six independent
distributions, some with nontrivial shapes.
The simple two-wave picture of charge production used

here is only approximate and assumes that �ab stays con-
stant during the QGP, but the ideas can be incorporated into
a model with continuous evolution of �. This would result
in non-Gaussian shapes to the correlations in coordinate
space. Non-Gaussian behavior might result from causal
diffusion [17] or from the tunneling dynamics of string
breaking. We could have chosen from numerous blast-
wave parametrizations, which may differ at the 10% level
even when they identically fit the mean pt of various
species. The blast wave should ultimately be replaced
with a microscopic simulation of the hadronic phase.
This would also model the diffusion during the hadronic
phase. These calculations only apply at high energies,
where there are roughly equal numbers of particles and
antiparticles, but the methods can be extended to incorpo-
rate nonzero net charge. One could then address the evo-
lution of the correlations through a beam energy scan that
covers the critical region for QCD.
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FIG. 3 (color online). The hadronization and QGP components
of the pK� correlations, shown in the upper panel, have opposite
signs, which results in a correlation that changes sign. This
would represent dramatic evidence of the two-wave nature of
charge production. The pK� correlation is sensitive to the off-
diagonal elements of �QGP, as can be seen by comparing the
upper panel, where there are no such elements, to the lower
panel, which uses the elements described by Eq. (10).
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FIG. 4 (color online). Since few strange quarks are produced
during hadronization, the hadronization component for KþK�
correlations is small, as shown in the upper panel. If the QGP had
half the strangeness content, the hadronization component would
be larger and one would have a much narrower correlation, as
seen in the lower panel.
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