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We construct novel static, asymptotically five-dimensional anti–de Sitter black hole solutions with

Bianchi type-VII0 symmetry that are holographically dual to superconducting phases in four spacetime

dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of

the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall

solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.
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Introduction.—The AdS/CFT correspondence is a
powerful tool to analyze strongly coupled quantum field
theories and there has been a surge of activity aimed at
finding possible applications both to condensed matter
systems and to QCD. One focus has been to holographi-
cally realize various kinds of phases via the construction of
fascinating new classes of black hole solutions, which are
also of interest in their own right.

An important development was the discovery of black
brane solutions that are holographically dual to supercon-
ducting phases, or more precisely, superfluid phases [1].
These black holes carry a halo of charged hair that sponta-
neously breaks a global Abelian symmetry of the dual field
theory. In the simplest examples, the charged hair is in the
guise of a bulk scalar field, corresponding to a scalar order
parameter in the dual field theory, and hence an s-wave
superconducting phase. p-wave superconducting phases,
in which the order parameter has angular momentum
l ¼ 1, have also been realized [2,3].

Spatially modulated phases are also widely seen in
nature. The order parameters for these phases are associ-
ated with nonzero momentum and spontaneously break
some or all of the translation invariance. Common ex-
amples in condensed matter include spin density waves
and charge density waves, while QCD at high baryonic
density is anticipated to be in a chiral wave state [4].
Spatially modulated phases that are also superconducting
are possible [5] and such FFLO phases have been argued to
be realized in several systems [6]. Of particular interest
here are p-wave superconducting phases with a helical
order. In these phases, the l ¼ 1 order parameter points
in a given direction in a plane that then rotates as one
moves along the direction orthogonal to the plane. They
have been discussed, for example, in the context of non-
centrosymmetric heavy fermion compounds [7].

Holographic studies of spatially modulated phases were
initiated in [8]. The purpose of this Letter is to present the
very first construction of fully backreacted black hole
solutions that are holographically dual to spatially modu-
lated phases, which are, moreover, superconducting. We
will consider a class of gravitational models in D ¼ 5 that

couple a metric with a gauge field and a two-form poten-
tial, which have been shown, using a linearized analysis, to
admit black brane solutions that are dual to p-wave super-
fluid phases with a helical order in d ¼ 4 [9].
Our construction of the new black holes allows us to

show that the helical p-wave superconducting phase is
thermodynamically preferred and that the phase transition
is generically second order. The helical order is fixed by
wave number k, or equivalently a pitch p ¼ 2�=k. We
calculate kðTÞ and find that it monotonically decreases
down to a finite value as T ! 0. We find that the solutions
have a vanishing entropy density as T ! 0. In this limit
they approach smooth domain wall solutions, which we
also construct, that interpolate betweenAdS5 in the UVand
a new spatially homogeneous but nonisotropic ground state
in the IR, of a type that was recently discussed in [10].
There are other contexts in which spatially modulated

black holes should exist, but in general, the construction
will require solving nonlinear partial differential equations.
By contrast, a key point here is that the black holes for the
helical p-wave superconductors can be obtained by solving
ordinary differential equations since they are static and also
have a Bianchi VII0 symmetry.
The D ¼ 5 model.—As in [9], we consider a D ¼ 5

model coupling a metric to a gauge field A and a complex
two-form C with action

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
Rþ 12� 1

4
F��F

�� � 1

4
C��

�C��

þ i

24m
������C��

�H���

�
; (1)

where a bar denotes complex conjugation and the field
strengths, using a form notation, are given by

F ¼ dA; H ¼ dCþ ieA ^ C: (2)

This simple class of models, specified by the parameters
m and e, is rather natural. The equations of motion admit a
unit radiusAdS5 solution with A ¼ C ¼ 0, which is dual to
some putative conformal field theory (CFT). The massless
gauge field A is dual to a current in the CFT, corresponding
to a global Abelian symmetry, with scaling dimension
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� ¼ 3. The two-form C satisfies a first-order equation of
motion and is dual to a self-dual rank two tensor operator
with � ¼ 2þ jmj. In particular, this charged operator has
l ¼ 1 and thus provides an order parameter for p-wave
superconductivity. Such two-forms are common in Kaluza-
Klein reductions fromD ¼ 10 orD ¼ 11 supergravity. For

example, when e ¼ 1=
ffiffiffi
3

p
,m ¼ 1 precisely, this model can

be obtained as a consistent Kaluza-Klein truncation of type
IIB supergravity on S5 and moreover, the operator in
N ¼ 4 SYM dual to C is known [3].

We will study the CFT dual to the AdS5 vacuum at finite
temperature T and chemical potential� with respect to the
global Abelian symmetry by constructing electrically
charged asymptotically AdS5 black branes.

Black hole solutions.—The ansatz for all the black hole
solutions that we consider is given by

ds2¼�gf2dt2þg�1dr2þh2!2
1þr2ðe2�!2

2þe�2�!2
3Þ;

C¼ðic1dtþc2drÞ^!2þc3!1^!3; A¼adt; (3)

where the one-forms !i are given by

!1 ¼ dx1; !2 ¼ cosðkx1Þdx2 � sinðkx1Þdx3;
!3 ¼ sinðkx1Þdx2 þ cosðkx1Þdx3; (4)

and f, g, h, �, ci; and a are all functions of the radial

coordinate r only, and k is a constant. Observe that k can be
scaled out of the ansatz by scaling h but it has been
included for later convenience. The unit radius AdS5 vac-
uum solution can be obtained by setting g ¼ r2, f ¼ 1,
h ¼ r, and � ¼ a ¼ ci ¼ 0. Notice that the ansatz (3) is
static, and in addition, the constant t and r slices are
spatially homogenous of, generically, Bianchi type VII0.

Substituting this ansatz into the D ¼ 5 equations of
motion, we find that we can solve for c1 and c2:

c1 ¼ � e2�

e4�k2 þm2h2
ðe2�keac3 þmhfgc03Þ;

c2 ¼ 1

fg

e2�

e4�k2 þm2h2
ðmeahc3 � e2�kfgc03Þ: (5)

The remaining equations can be obtained from a one-
dimensional action obtained by substituting the ansatz
into the action associated with (1).

The equations of motion admit the electrically charged
anti–de Sitter-Reissner-Nordström (AdS-RN) black brane
solution with � ¼ ci ¼ 0, f ¼ 1, h ¼ r, and

g ¼ r2 � r4þ
r2

þ�2

3

�
r4þ
r4

� r2þ
r2

�
; a ¼ �

�
1� r2þ

r2

�
: (6)

This solution approaches the unit radius AdS5 solution as
r ! 1. The event horizon is located at r ¼ rþ and the
temperature is T ¼ ð6r2þ ��2Þ=6�rþ. This solution is
dual to the CFT at finite chemical potential � and high
temperatures. Clearly this phase is spatially homogeneous
and isotropic. It was shown in [9] that below a critical

temperature, depending on the parameters m, e, and the
scale set by �, this black hole is unstable to the formation
of black holes that are dual to p-wave superconductors
with helical order.
Let us first discuss the boundary conditions to be im-

posed for the new black brane solutions. Regularity at the
horizon demands that gðrþÞ ¼ aðrþÞ ¼ 0. We then find
that the solution at the horizon is specified by six parame-
ters: rþ, fðrþÞ, hðrþÞ, �ðrþÞ, a0ðrþÞ, and c3ðrþÞ. As
r ! 1 we approach AdS5 with asymptotic expansion

g ¼ r2ð1�Mr�4 þ � � �Þ; f ¼ f0ð1� chr
�4 þ � � �Þ;

h ¼ rð1þ chr
�4 þ � � �Þ; � ¼ c�r

�4 þ � � � ;
a ¼ f0ð�þ qr�2 þ � � �Þ; c3 ¼ cvr

�jmj þ � � � ; (7)

which is specified by eight parameters M, f0, ch, c�, �, q,
cv, and k. A number of comments are in order. First, the
fact that h� r implies that the wave number k can no
longer be scaled away. Second, the fall off of c3 is chosen
so that the charged operator dual to the two-form C has no
deformation but can spontaneously acquire an expectation
value proportional to cv and spatially modulated in the x1
direction with period 2�=k. The holographic interpretation
of the other UV parameters will be given below. Third,
there are two scaling symmetries of the differential equa-
tions that allow us to set � ¼ f0 ¼ 1, and we will do so
later (it is helpful to have them to discuss the thermody-
namics). Finally, we have four second order differential
equations for h, �, a, c3, and two first order equations for
g, f, and hence a solution is specified by 10 integrations
constants. On the other hand, we have 14 parameters in the
boundary conditions minus two for the scaling symmetries.
We thus expect a two-parameter family of black hole
solutions that can be specified by temperature T and
wave number k.
Action and thermodynamics.—We analytically continue

by setting t ¼ �i	 and defining I ¼ �iS. The total action,
including relevant boundary terms, is given by

ITot ¼ I þ
Z

d	d3x
ffiffiffiffiffiffiffi
g1

p ½�2K þ 6þ � � ��; (8)

with g1 ¼ limr!1g1=2fhr2 and K is the trace of the
extrinsic curvature of the boundary at r ! 1. In (8), the
ellipses refer to terms that will not contribute to the class of
solutions that we are considering. The period of our
Euclidean time is taken to be �	 and the temperature is
then given by T ¼ ðf0�	Þ�1. Regularity at r ¼ rþ implies

that T ¼ f
f0
g0ð4�Þ�1jr¼rþ . We next define the thermody-

namic potential W ¼ T½ITot�OS � wvol3, where ½ITot�OS is
the on-shell action. Following the calculation in [11], we
obtain the two equivalent expressions

w ¼ �M ¼ "þ 2�q� Ts; (9)

where we defined the entropy density s ¼ 4�r2hþ, " ¼
3Mþ 8ch, and have set f0 ¼ 1. By calculating the
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on-shell variation of ITot, including variations of f0, we
deduce that w ¼ wðT;�Þ and the first law

�w ¼ �s�T þ 2q��: (10)

Using (9) we also have �� ¼ T�s� 2��q. The identifi-
cation of " with energy density is confirmed by computing
the boundary stress-energy tensor [12], again with f0 ¼ 1,

Ttt¼3Mþ8ch; Tx1x1 ¼Mþ8ch;

Tx2x2 ¼Mþ8c�cosð2kx1Þ;
Tx3x3 ¼M�8c�cosð2kx1Þ; Tx2x3 ¼�8c� sinð2kx1Þ: (11)

Observe that when c� � 0, the pressures in the x2, x3 plane
are spatially modulated as one moves along the x1 direction
as one expects for helical order. Defining the average
hydrostatic pressure, �p, as minus the average of the trace
of the spatial components, we get �p ¼ Mþ 8ch=3. The
thermodynamically preferred black hole solutions that we
construct will have c� � 0 and ch ¼ 0. Using (9) we
conclude that this class satisfies the thermodynamic rela-
tion "þ �p ¼ Ts� 2�q.

Helical superconducting black holes.—The AdS-RN
black brane solution (6) is unstable when e2 >m2=2 [9].
We will now consider the specific model with m ¼ 1:7,
e ¼ 1:88 (for reasons we explain below), and set � ¼
f0 ¼ 1. For high temperatures, we only find the AdS-RN
black hole solution. The first new black hole solution
appears at Tc � 0:0265 and for k ¼ kc � 0:550. Holding
this value of k fixed, we numerically construct these black
hole solutions all the way down to very low temperatures.
Below Tc, as expected from the linearized analysis of [9],
there is a continuum of black hole solutions that appear
with different values of k. By again holding k fixed, we can
construct each of these black holes too, down to low
temperatures.

In Fig. 1, we summarized this new two-parameter family
of solutions and displayed their free energy w. All of these
solutions have smaller free energy than the AdS-RN black
brane solutions at the same temperature. At a given tem-
perature T < Tc there is a one parameter family of black
hole solutions specified by k and the one with the smallest
free energy is depicted by a point on the red line in Fig. 1.
Thus, the one-parameter family of solutions specified by
the red line characterizes the thermodynamically preferred
solutions. Notice that we have a second order phase tran-
sition at T ¼ Tc, k ¼ kc and that as the temperature is
lowered, the system smoothly moves between black hole
solutions with different values of k, all the way down to a
very low temperature where k � k0 � 0:256. In particular,
the T ¼ 0 ground state remains spatially modulated.

Interestingly, while the general two-parameter family of
solutions have ch � 0, the solutions on the red line have
(up to numerical accuracy) ch ¼ 0. In Fig. 2, we have
plotted, for the red line of solutions, the behavior of cv
and wave number k, which together characterize the helical

superconducting order, versus T. Near Tc we find the mean

field behavior cv � 1:7� 105T3:7
c ð1� T=TcÞ1=2.

New ground states at T ¼ 0.—We are particularly inter-
ested in the T ¼ 0 limit of the thermodynamically pre-
ferred black hole solutions (the red line in Fig. 1), which

FIG. 1 (color online). The two-parameter family of helical
superconducting black holes. The red line (diagonal on the sur-
face) denotes the thermodynamically preferred locus. The blue
line (at T ¼ 0) is the free energy of some domain wall solutions.
Lines of constant T are also marked with black lines.
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FIG. 2 (color online). Plots of cv and wave number k, which
together fix the helical superconducting order, versus T for the
thermodynamically preferred black hole solutions on the red line
in Fig. 1. The blue dots depict the quantities for the domain wall
solutions. Note the scaled axes.
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has k ¼ k0 � 0:256. It is helpful to first consider the
T ¼ 0 limit of the whole class of black holes for general
values of k. We find that they all approach a smooth
domain wall solution that interpolates between AdS5 in
the UV and a new fixed point in the IR with a scaling
symmetry of a type that is very similar to those of [10].
Indeed we checked this explicitly for the range 0:253 �
k � 0:75 (going to smaller values of k becomes increas-
ingly difficult numerically).

To obtain this new fixed point solution, in (3) we put

g¼Lr2; f¼ �f0r
z�1; h¼kh0; �¼�0;

a¼a0r
z; c3¼kc0r; (12)

where L, h0, �0, a0, c0, and z are all constant. By scaling t
and x1 we can set �f0 ¼ k ¼ 1. Notice that this ansatz
corresponds to a solution invariant under the anisotropic
scaling r ! 
�1r, t ! 
zt, x2;3 ! 
x2;3, and x1 ! x1.
After substituting into the equations of motion, we obtain
a system of algebraic equations that can be solved. For the
specific case of m ¼ 1:7, e ¼ 1:88 we find

z � 1:65 . . . ; L � 0:995 . . . ; h0 � 0:993 . . . ;

�0 � �0:380 . . . ; a0 � 0:265 . . . ;

c0 � 3:69 . . . : (13)

We next construct domain wall solutions that interpolate
between this fixed point in the IR and AdS5 in the UV [13].
In the UV, we continue to demand the expansion given by
(7). To obtain the IR expansion, we first consider pertur-
bations about (12) of the form

g¼ r2ðLþ
w1r
�Þ; f¼ �f0r

z�1ð1þ
w2r
�Þ;

h¼kðh0þ
w3r
�Þ; �¼�0þ
w4r

�;

a¼f0a0r
zð1þ
w5r

�Þ; c3¼kc0rð1þ
w6r
�Þ: (14)

After expanding the equations of motion at first order in 
,
we obtain a homogeneous linear system of equations of the
form E � w ¼ 0 where E is a 6� 6 matrix that depends on
�. Demanding nontrivial solutions for w, we determine the
values of � by solving the polynomial equation jEj ¼ 0.
For the special case m ¼ 1:7, e ¼ 1:88 the modes with
non-negative real parts have �0 ¼ 0, �1 � 0:394, �2 �
0:826, �3 � 0:847, and �4 � 2:289 [14]. The IR expansion
is then specified by a constant for each of these modes.
Notice that the mode with �0 ¼ 0 corresponds to the
constant �f0. This leads to five (real) parameters in the IR.
With the eight parameters mentioned for the UV discussed
earlier, we now deduce that the domain wall solutions will
be specified by a single parameter that we can take to be the
wave number k.

We have constructed these solutions for the range
0:253 � k � 0:75, which required utilizing high precision
numerics. As noted above, we find that the T ¼ 0 limit
of the black hole solutions approach these domain wall

solutions. For example, in Fig. 1, the blue line depicts the
free energy of the domain wall solutions for various values
of k, showing precise agreement with the T ¼ 0 limit of the
black holes. Similarly, in Fig. 2, for the domain wall with
k ¼ k0 � 0:256 we have shown the UV values of cv and k
with a blue dot, and again, we see precise agreement with
the corresponding black hole solution.
Final comments.—Let us summarize the main physical

results. The d ¼ 4 CFT, dual to the AdS5 solution of our
model (1), held at finite chemical potential undergoes a
second order phase transition at a critical temperature Tc.
The new phase is a helical superconducting phase that
spontaneously breaks both the global Abelian symmetry
and the three-dimensional spatial Euclidean symmetry
down to Bianchi VII0 symmetry. At Tc the spatial modu-
lation is fixed by a wave number kc and as the temperature
is cooled, the wave number monotonically decreases. The
T ¼ 0 ground state of the system maintains the helical
order with nonvanishing wave number and has an emergent
scaling symmetry in the far IR. These homogeneous, non-
isotropic ground states at T ¼ 0 are holographically de-
scribed by smooth domain wall solutions. It is natural to
next use the AdS/CFT correspondence to analyze trans-
port. Based on the rich optical properties of other helical
orders (such as the chiral nematic phase of liquid crystals
recently discussed in [16]) we expect interesting results.
We expect analogous solutions for the helical super-

conductors of theD ¼ 5models with SUð2Þ �Uð1Þ gauge
fields studied in [9]. In particular, we have checked that the
(top-down) Romans theory admits a Bianchi VII0 ground
state solution with scaling exponent z � 3:98 that we con-
jecture to be the IR limit of a T ¼ 0 domain wall solution.
More generally, we now anticipate many other construc-
tions of black holes in D ¼ 5, 4 that are dual to other
spatially modulated phases, both superconducting and
otherwise.
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