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We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers

separated by large baselines and referenced by common laser systems. We compute the sensitivity limits

of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources,

and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find

that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase

noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach

interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and,

in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases

is severe.
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Introduction.—The detection and measurement of gravi-
tational waves (GWs) from astrophysical and cosmological
sources is recognized as one of the most promising sources
for new information about the Universe [1] and has been a
goal of experimental physicists for nearly half a century
[2–8]. The milliHertz-frequency region of the GW spec-
trum is expected to be particularly rich in GW sources and
has been the target of proposed space-based instruments,
most notably the Laser-Interferometer Space Antenna
(LISA) [9]. LISA was identified as a priority in the most
recent decadal survey of astronomy and astrophysics [10]
but has yet to be implemented due to funding constraints.

GW detectors based on a single isolated atom interfer-
ometer (AI) have been considered [11] but found to have
little advantage over light interferometers [12,13]. More
recent proposals use two AIs separated by a large baseline
and referenced to a common pair of lasers [14,15]. These
instruments use the AIs both to provide an inertial refer-
ence and to measure the phase of the light fields used as the
atom ‘‘optics.’’ When the light source is placed sufficiently
far from the AI, the optical phase contains a non-negligible
contribution from GWs. However, the optical phase mea-
sured by the AI also contains contributions from intrinsic
phase fluctuations of the light source and Doppler motion
of the light source relative to the atoms. By using a com-
mon pair of lasers for both AIs, the proposed GW detectors
can eliminate contributions from one of these light sources.
However, the contributions from the second light source
remain. In this Letter, we calculate the limits on GW
sensitivity resulting from intrinsic phase fluctuations and
light-source motion for a GW detector consisting of two
AIs while making a parallel analysis of a light interfer-
ometer (analogous to a single ‘‘arm’’ of LISA).

Our treatment clarifies the relative merits of the two
approaches to space-based GW measurement and may be
helpful in future GW instrument design considerations.

Analysis.—A single three-pulse Mach-Zehnder (MZ)
AI, such as the one shown in Fig. 1, is controlled by two
lasers (‘‘left’’ and ‘‘right’’) on separate platforms separated
by a distance L. A three-level atomic system is assumed
with ground states jpi; ii, where pi describes the linear
momentum of the atom in the x̂ direction and i ¼ 1, 2
denotes the internal state. An atom cloud prepared in state
jp1; 1i enters the interferometer and is subjected to a
Raman �

2 -pulse beam splitter at point a at time t� 2T.

This splits the atom wave packet into a portion in state
jp1; 1i and a portion in state jp2; 2i. At a time t� T, a
� pulse converts the jp1; 1i portion into jp2; 2i at point b.
A short time �t later, the same pulse converts the jp2; 2i
state back into a jp1; 1i state at point c. At time t, the two
wave function paths converge (point d) and are recombined
with another �

2 pulse.

FIG. 1 (color online). A three-pulse Mach-Zehnder atom in-
terferometer controlled by two lasers on separate platforms
separated by a distance L.
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After recombination, the population in one or both of the
two ground states is measured and the result is used to
determine the phase of the wave function. It has been
shown [16] that the wave function phase response, �ðtÞ,
from the AI measured just after the third pulse at time t is
given by

�ðtÞ���ðtÞ�2��ðt�TÞþ��ðt�2TÞþ��mðtÞ; (1)

where ��ðtÞ is the difference from nominal phases of the
optical phases observed by the atoms and ��mðtÞ is any
measurement noise in the AI, for instance atom shot noise.
We assume T � �t and we neglect the finite duration of
the Raman pulses here for clarity [17]. In the Fourier
domain, (1) becomes

~� ¼ �4sin2ð!T=2Þe�i!T� ~�þ � ~�m; (2)

where tilde denotes the Fourier transform of a time series
and ! is the angular Fourier frequency. In the low-

frequency limit !T � 1 the transfer function from � ~� to
~� is that of a second time derivative. The significant time-
varying contributions to the phase differences are given by

��ðtÞ ¼ ��LðtÞ � ��RðtÞ; (3)

where��LðtÞ are the phase variations of the left light source
retarded from a reference point in the vicinity of the atom
cloud, and ��RðtÞ are the retarded phase variations of the
right light source. Specifically,

��LðtÞ � k�x1ðtÞ þ ��1ðtÞ; (4)

��RðtÞ � �k�x2ðt�DÞ þ ��2ðt�DÞ þ kcY�ðtÞ; (5)

where k is the nominal wave number of the photons, ne-
glecting the splitting between the j1i and j2i internal states
and other higher-order effects. The approximate light
propagation time between the distant right laser and the
atom cloud isD ¼ L=c, the position fluctuations caused by
nongravitational forces on the left and right light sources
are given by �x1ðtÞ and �x2ðtÞ, and the intrinsic optical
phase noise for the left and right light sources are given
by ��1ðtÞ and ��2ðtÞ. GWs will cause the received optical
phase to differ from the emitted phase by a Doppler
shift Y�ðtÞ.

We ignore any GWeffect on the individual AI, assuming
the atom separation is much smaller than L [14]. Similarly,
we neglect GWeffects on the phase of the left light source,
which is assumed to be close to the AI. In the Fourier
domain, the phase difference needed for Eq. (1) is

� ~�L �½k�~x2�� ~�2�e�i!Dþk�~x1þ� ~�1�kc ~Y�: (6)

For comparison, we can evaluate the phase difference
measured by a one-way light interferometer link, which
forms the basis of light interferometer detectors such as
LISA:

� ~�ðlÞ
L �½k�~x2�� ~�2�e�i!D�k�~x1þ� ~�1�kc ~Y�: (7)

The primary difference between the phase measured by
the AI and that measured by a light interferometer is in the
sensitivity to motions of the light sources. In the case of the
AI, the measured phase is sensitive to the common-mode
motion of the light sources, where in the case of the light
interferometer the measured phase is sensitive to differen-
tial motion. Importantly, the sensitivity to intrinsic phase
noise and gravitational waves is identical. We also note
that we use the general term ‘‘light-source motion’’ while
in practice the relevant motion will typically be that of a
fiducial optic such as a mirror or beam splitter rather than
of the light source itself.
A classic application of a single AI like that in Fig. 1 is

as a gravimeter or accelerometer. In that case, with the
appropriate approximations �~x1 ¼ �~x2 ¼ �~x (common

rigid optics platform), � ~�1 ¼ � ~�2 (common laser source),
D � 0 (short distance), and ~Y� � 0, Eq. (6) reduces to

� ~�L � 2k�~x. Applying the low-frequency limit of (2), the
output of the MZ is ~� � �2kT2�~a, where �~a � !2�~x is
the acceleration noise of the light source (the atoms are
assumed to be in an inertial frame in this analysis). This is
consistent with results in the literature for AI-based grav-
imeters [18].
We consider one-arm GW detectors [14,15] based on a

pair of AIs in an arrangement similar to the design of
gravity gradient experiments [19], as shown in Fig. 2. A
common pair of lasers drives two three-pulse MZ AIs
which are spaced by a distance L ¼ cD.
The vertex contribution to the response of the left-hand

interferometer is given by (6). The contribution to the
response of the right-hand interferometer is similar,

� ~�R�½k�~x1þ� ~�1�e�i!Dþk�~x2�� ~�2þkc ~Yþ; (8)

where � ~�R denotes the phase difference at an AI vertex on
the right atom interferometer and ~Yþ is the GW effect

FIG. 2 (color online). An arrangement of two three-pulse
Mach-Zehnder atom interferometers separated by a baseline L
and using common light sources have been proposed as a
detector of gravitational waves.
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incurred by the left laser beam propagating to the right
atom cloud.

The effect of GWs on electromagnetic propagation from
a distant source is familiar from the analysis of space-based
light interferometer concepts, pulsar-timing searches for
GWs, and microwave Doppler tracking of spacecraft. The
result is a Doppler shift on the electromagnetic frequency
given by [20,21]

yðtÞ � ��

�
¼ 1

2

ninj½hijðxaemitÞ � hijðxarecÞ�
1� kini

; (9)

where ni is the laser propagation direction, ki is the GW
propagation direction, and the spacetime metric hij is in

transverse-traceless gauge evaluated at the points of
emission and reception at the atom. In our case we will
assume that ni is in the �x̂ direction, and define
cosð�Þ ¼ kx. Then, assuming the instrument is optimally
oriented for a linearly polarized GW signal hðtÞ, with t
being evaluated at a point x0 midway between the two
atom clouds, the relevant metric component is hxx ¼
sin2ð�Þhðt� cosð�Þðx� x0Þ=cÞ.

The GW terms, Y�, in (6) and (8) are related to the GW
Doppler shift in (9) by a time derivative. Taking into
account the spacetime emission and reception points, we

get ~Y� ¼ ~y�=ði!Þ ¼ � 1
2
~hDsin2ð�Þe�i!D=2sincð!Dð1�

cos�Þ=2Þ. For the remainder of our analysis, we will con-
sider a GW source with an optimal sky location (� ¼ �

2 ),

for which ~Y� � �~h!�1e�i!D=2 sinð!D=2Þ.
The output of the GW detector in Fig. 2 is obtained by

differencing the response of the two AIs, �ðtÞ ¼ �RðtÞ �
�Lðt�DÞ, where �L=R is the response given in (1) from

the left and right AIs, respectively. The GW signal is
derived from the difference in the response ~� from the
two AIs, and thus depends on the optical phase difference
at the corresponding vertices on the left and right AI,
��ðtÞ � ��RðtÞ � ��Lðt�DÞ. Making substitutions
from (6) and (8) and converting to the Fourier domain,
the result is

�~� ¼ 2i sinð!DÞe�i!D

�
k�~x2 � � ~�2 þ ikc

2!
~h

�
: (10)

Note that in (10) the contributions from the left laser’s
intrinsic frequency noise and from the Doppler shifts in-
duced by the left laser platform’s motion are canceled out
but the corresponding terms from the right laser and laser
platform remain. The output of the complete two-cloud
GW detector in Fig. 2 can be computed by combining (2)
and (10):

~� ¼ �

�
k�~x2 � � ~�2 þ ikc

2!
~h

�
þ�~�m; (11)

where � � �8isin2ð!T=2Þ sinð!DÞe�i!D and �~�m rep-
resents the combined measurement noise in the two AIs.

For comparison, consider the two-way light interfer-
ometer signal, which is formed by differencing the two
one-way optical phase measurements given by (7)

~� ðlÞ ¼ �ðlÞ
�
� ik

sinð!DÞ�~x12 � � ~�2 þ ikc

2!
~h

�
þ �~�ðlÞ

m ;

(12)

where �ðlÞ � 2i sinð!DÞe�i!D, �~x12��~x1�cosð!DÞ�~x2,
and �~�ðlÞ

m is the combined phase measurement noise, for
example, due to photon shot noise, in the single light
interferometer arm.
The strain sensitivity of a GW detector can be computed

by comparing the relative sizes of the GW strain and the
noise sources in the detector output. For a general GW

detector with frequency response ~� and noise sources ~��,
the sensitivity can be computed as

Sh ¼
��������
@~�

@~h

��������
�2X

�

��������
@~�

@~��

��������
2

S��; (13)

where Sh is the power spectral density of the GW strain
equivalent to the detector noise and S�� are the power

spectral densities of the noise sources.
This formalism can be applied to the GW detector in

Fig. 2 using the result in (11), yielding contributions to the
sensitivity from intrinsic phase noise, platform position
noise, and measurement noise. Alternatively, the sensitiv-
ity can be expressed in terms of the intrinsic fractional
frequency noise, S�� � !2=ð2��Þ2S��2

, the platform ac-

celeration noise, Sa2 � !4Sx2 , and measurement noise,

which we assume is dominated by the combined atomic
shot noise, Sshot ¼ 2=	Hz�1, 	 being the number of atoms
detected per second:

Sh ¼ 4S�� þ 4

!2c2
Sa2 þ

1

8ðkcDÞ2sin4ð!T=2Þ	
1

Hz
;

(14)

where we have taken the limit !D � 1, consistent with
typical AI GW instrument concepts. The literature on
proposed AI GW instruments typically only considers the
last term in (14) [22].
The same procedure can be applied to the single-arm

light interferometer described by (12) with the combined
measurement noise being the photon shot noise in the two

interference measurements, SðlÞshot ¼ 2@�=PrecHz
�1, where

Prec is the light power received from the far light source,

SðlÞh ¼ 4S�� þ 4

!4c2D2
Sa12 þ

@

�kcD2Prec

: (15)

It is clear from the first terms in (14) and (15) that
detection of a characteristic strain h with either a single-
arm light interferometer or a single-arm AI requires a

light source with S1=2�� � h=2. The highest performing

cavity-stabilized laser systems, which are limited by ther-

mal noise in the cavity mirror coatings, have S1=2�� �
10�15ðf=1 HzÞ�1=2Hz�1=2 [23,24]. This is roughly 6
orders of magnitude above the typical strength of
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astrophysical GW sources in the milliHertz band. Light
interferometers typically address this problem by utilizing
multiple arms. For a detector with two equal-length or-
thogonal arms driven by a common laser source, the optical
phase terms in each measurement will have the same sign
and magnitude while the GW term will have the opposite
sign due to the quadrupolar signature of the response.
Differencing the signals from the two arms cancels
optical phase noise while retaining the GW signal. This
cancellation can be extended to arrangements with unequal
length arms using the time delay interferometry (TDI)
technique [25].

Because acceleration noise in orthogonal directions is
uncorrelated, multiple-arm interferometer designs do not
allow light-source acceleration noise to be cancelled. For
example, an equal-arm Michelson interferometer is sensi-
tive to both in-plane components of the beam-splitter
motion. However, there are two differences in sensitivity
between the AI-based GW detector and the light interfer-
ometer equivalent. The first is that the AI is sensitive to the
absolute acceleration noise of one of the light sources,
whereas the light interferometer is sensitive to the relative
acceleration noise between the two light sources. The
second is that the light interferometer sensitivity has an
additional factor of ð!DÞ�2, which means that for a short
detector baseline with a given light-source acceleration
noise, the light interferometer will have a higher sensitivity
limit (less sensitive to GW signals) than the equivalent
AI detector. In the case of the AI, the light-source accel-
eration noise requirements for detecting astrophysical GW
sources are independent of the baseline, but nonetheless
stringent. For example, to reach a strain sensitivity of

S1=2h � 10�21 at a frequency of ! ¼ ð2�Þ1 mHz would

require a light-source acceleration noise less than S1=2a 	
10�15 m=s2=Hz1=2. It makes sense that this is comparable
to the residual acceleration requirement on the drag-free
test masses in LISA and LISA Pathfinder [9,26] since
ð!DÞLISA 	 1.

Discussion.—In this analysis we have compared the
basic gravitational-wave response and sensitivity proper-
ties of possible space-based atom intereferometer instru-
ments with analogous laser-interferometer instruments,
focusing on two of the classic noise sources, spacecraft
reference motion and laser phase noise. These noise
sources constrain traditional gravitational-wave mission
design, but have generally been given little attention in
the discussion of AI-based concepts.

We summarize our results in terms familiar to the laser-
interferometer GW community. Each AI cloud functions as
a (nearly) free-falling laser phase meter. The AI signal
results from electromagnetic phase signals which are iden-
tical to analogous spacecraft-local phase measurements in
a light interferometer link in their responses to both
gravitational waves and laser frequency, but differ in
their responses to the light-source motion. The atom

interferometer shows common-mode motion of the two
end light sources rather than relative motion.
Because of this difference, in the AI instrument, accel-

eration noise of one laser source can be canceled, and the
effect on GW sensitivity of the other becomes independent
of the instrument baseline. Beginning with a LISA-like
concept, the use of AI would allow the constellation to be
shortened without increasing the residual acceleration re-
quirements of the reference point. A smaller instrument
would potentially be more sensitive to higher-frequency
gravitational-wave signals.
To determine whether this potential could be realized

requires the resolution of a large number of technical issues
which fall beyond the scope of this analysis. The accelera-
tion noise requirement on the atom clouds, for instance,
does increase when the arms are shortened. Many of these
technical issues have been carefully studied in the AI
community, but detailed requirements for a space-based
gravitational-wave mission have not been carefully worked
out. Where they are known, the requirements often exceed
the current performance of ground-based experiments. We
also note that we expect the GW sensitivity limits due to
optical phase noise and light-source acceleration noise
discussed here to be generally applicable to more complex
AIs. This is because the competition between the GW
signal, optical phase noise, and acceleration noise occurs
in the optical phase. A more precise measurement of this
phase with a more complex AI (e.g., high-momentum
transfer atomic beam splitters, 5-pulse interferometers,
etc.) may improve GW sensitivity relative to atom shot
noise, but will not improve the sensitivity relative to optical
phase noise or acceleration noise. We expect the ideas
presented here to be helpful in designing future GW instru-
ments which make the best use of AI technology.
We thank Dr. Jan Harms for providing a copy of his

report [27]. We also thank Holger Müller and Jeffrey Livas
for helpful discussions and Bernard Kelly for his careful
review of the manuscript. This work was partially sup-
ported by NASAGrants No. 08-ATFP08-0126 and No. 11-
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Note added.—Recently, we were made aware of a re-

lated analysis of ground-based atomic interferometer
gravitational-wave detectors [27] and find our calculations
to be in agreement in the appropriate limits.
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