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It has been recently found that the so-called isoperiodic stable structures (ISSs) have a fundamental role

in the classical current behavior of dissipative ratchets [Phys. Rev. Lett. 106, 234101 (2011).]. Here I

analyze their quantum counterparts, the quantum ISSs (QISSs), which have a fundamental role in the

quantum current behavior. QISSs have the simple attractor shape of those ISSs which settle down in short

times. However, in the majority of the cases they are strongly different from the ISSs, looking

approximately the same as the quantum chaotic attractors that are at their vicinity in parameter space.

By adding thermal fluctuations of the size of @eff to the ISSs I am able to obtain very good approximations

to the QISSs. I conjecture that in general, quantum chaotic attractors could be well approximated by

means of just the classical information of a neighboring ISS plus thermal fluctuations. I expect to find this

behavior in quantum dissipative systems in general.
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During the last years there have been great advances in
the area of directed transport [1–3]. Understood as trans-
port phenomena in periodic systems out of equilibrium,
this field has attracted great attention giving rise to many
investigations of interdisciplinary nature. In fact, ratchet
models have found application in biology [4], nanotech-
nology [5], and chemistry [6], just to name a few examples.
In particular, cold atoms in optical lattices have shown
very successful theoretical developments and implementa-
tions [7,8]. Moreover, Bose-Einstein condensates have
been transported by means of the so-called purely quantum
ratchet accelerators [9], where the current has no classical
counterpart [10] and the energy grows ballistically [11,12].

The current generation mechanism consists of breaking
all spatiotemporal symmetries leading to momentum
inversion [13]. Classical deterministic ratchets with dissi-
pation are generally associated with an asymmetric chaotic
attractor [14]. Quantum effects were considered to analyze
the first so-called quantum ratchets in [15], while a dis-
sipative quantum ratchet, interesting for cold atoms experi-
ments has been introduced in [16]. Very recently, the
parameter space of the classical counterpart of this system
has been studied in detail [17]. There it has been found that
not only chaotic domains but more importantly, a family of
isoperiodic stable structures (ISSs) has a fundamental role
in understanding the current behavior, a major issue in any
ratchet system. Moreover, a complete characterization of
this family has been given and a connection with the
current values has been also provided. These ISSs are
Lyapunov stable islands of different periods and associated
currents that are grouped into structures in parameter space
and that can be found in generic dynamical systems.

Then, it is natural to ask how this family of ISSs translates
into the quantum domain. In this letter I answer this ques-
tion. I have found that the classical decay time towards these
stable structures is a determining factor for the shape of the

corresponding quantum ISSs (QISSs). Quantum ISSs are
defined as the quantum manifestations of the classical ISSs.
More precisely, I refer to QISSs regardless of them being of
a simple or a chaotic (complex) shape. This is in clear
contrast with classical ISSs, which are simple attractors in
our case. In fact, the majority of these classical structures
have very long transient times making the QISSs look like
the quantum chaotic attractors at their vicinity in parameter
space, whose classical counterparts are already chaotic (this
being the definition of a quantum (chaotic) attractor). In
comparatively few cases I have found quantum structures
similar to these classically simple objects (periodic points in
the case of maps). The simple shape of the ISSs seems to be
an almost exclusive property of the classical system. On the
other hand, by adding thermal fluctuations of the size of @eff
to the classical dynamics very good approximations to the
QISSs were obtained.
I investigate a paradigmatic dissipative ratchet system

given by the map [16,17]

�n¼�nþk½sinðxÞþasinð2xþ�Þ�; �x¼xþ� �n; (1)

where n is the momentum variable conjugated to x, � is the
period of the map and � is the dissipation parameter. This
dynamics can be interpreted as that of a particle moving in
one dimension [x 2 ð�1;þ1Þ] in a periodic kicked
asymmetric potential:

Vðx;tÞ¼k

�
cosðxÞþa

2
cosð2xþ�Þ

� Xþ1

m¼�1
�ðt�m�Þ; (2)

where � is the kicking period, and subject to a dissipation
0 � � � 1. When � ¼ 0 the particle is overdamped and
for � ¼ 1 we recover the conservative evolution. As usual,
the directed transport appears due to broken spatial (a � 0
and � � m�) and temporal (� � 1) symmetries. It is
useful to notice that the classical dynamics only depends
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on the parameter K ¼ k� by means of introducing the
rescaled momentum p ¼ �n.

In order to quantize this model I follow the standard
procedure: x ! x̂, n ! n̂ ¼ �iðd=dxÞ (@ ¼ 1). Since
½x̂; p̂� ¼ i�, the effective Planck constant is @eff ¼ �. The
classical limit corresponds to @eff ! 0, while K ¼ @effk
remains constant. The final ingredient, the dissipation, is
introduced by means of the master equation [18] for the
density operator �̂ of the system

_̂� ¼ �i½Ĥs; �̂� � 1

2

X2
�¼1

fL̂y
�L̂�; �̂g þ

X2
�¼1

L̂��̂L̂
y
�: (3)

Here Ĥs ¼ n̂2=2þ Vðx̂; tÞ is the system Hamiltonian, f; g is
the anticommutator, and L̂� are the Lindblad operators

given by

L̂ 1 ¼ g
X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnihnþ 1j;

L̂2 ¼ g
X
n

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p j � nih�n� 1j;
(4)

with n ¼ 0; 1; . . . and g ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi� ln�
p

(due to the Ehrenfest
theorem). This is a standard choice of Lindblad operators
for introducing dissipation (see [19] and references
therein), but other choices are possible. In all cases I
have evolved 106 classical random initial conditions hav-
ing p 2 ½��;�� and x 2 ½0; 2�� (hp0i ¼ 0), and their
quantum counterpart.

In [17] the important role that ISSs have on the ratchet
currents corresponding to dissipative systems has been
shown. There, three main kinds were identified and called
BM, CM and DM, whereM stands for an integer or rational
number and corresponds to the mean momentum of these
structures in units of 2�. With perhaps the only exception
of � ! 1 (i.e., near the conservative limit), ISSs organize
the parameter space structure and then are essential to
understand the current behavior. Though I have checked
the general validity of the results by sampling several
points in the parameter space, I have selected a represen-
tative case for each kind of these structures. Also, I have
studied a chaotic attractor case in the immediate vicinity of
one of them in parameter space, for comparison purposes.
It is important to underline that all the chaotic attractors in
the immediate vicinity of a given ISS (with different �, k,
or both) are of similar shape in general. In Fig. 1 I show
the phase space portraits (after 50 time steps of the map)
corresponding to the chosen cases, i.e., B1 [� ¼ 0:2, k ¼
8:2, Figs. 1(a) and 1(b)], C�1 [� ¼ 0:64, k ¼
5:6, Figs. 1(c) and 1(d)], and D�1 [� ¼ 0:29, k ¼ 11:9,
Figs. 1(e) and 1(f)]. Only for the first case I have found a
pointlike structure (besides the uncertainty restrictions)
similar to the classical simple attractors marked with black
dots in Figs. 1(a), 1(c), and 1(e). The two other kinds (and
even other regions of the same B1 large structure in
parameter space, and also other BM with M � 1) behave
like a quantum chaotic attractor. This strikingly different

behavior is due to the effects of the noise induced by
quantization [19,20]. The way to prove this is to introduce
fluctuations of the size of @eff in the classical model so as to
induce classical chaos. I do this by changing �n0 ! �n in
Eq. (1), where �n0 ¼ �nþ �. The thermal noise � is related
to �, according to h�2i ¼ 2ð1� �ÞkBT, where kB is the
Boltzmann constant (which I take equal to 1) and T is the
temperature. In this expression I have chosen the factor
(1� �) in order not to have noise in the conservative limit,
however other choices are possible. Finally I take T ’
@eff=½2ð1� �Þ�. As a result, I obtain the classical distribu-
tions that surround the periodic points and that are shown
in Figs. 1(a), 1(c), and 1(e). They are remarkably similar to
the corresponding quantum chaotic attractors. Even in the
first case [i.e., Figs. 1(a) and 1(b) corresponding to B1],
adding fluctuations is sufficient to reproduce the quantum
simple attractor (which is not pointlike, of course). This is
confirmed bymeans of the overlap measure defined asO ¼RR
Lðx; pÞH ðx; pÞdxdp (Lðx; pÞ andH ðx; pÞ are normal-

ized phase space distributions with the same discretization)
which compares the whole distributions, not just the first
moment. In this case these distributions correspond to the

FIG. 1 (color online). Phase space distributions corresponding
to the ISSs labeled by B1 (� ¼ 0:2, k ¼ 8:2, first row), C�1 (� ¼
0:64, k ¼ 5:6, middle row), and D�1 (� ¼ 0:29, k ¼ 11:9,
bottom row) in [17]. Lower to higher values of these distribu-
tions go from white to (rainbow colors) grays. Left column
shows the classical Poincaré maps while the right column shows
the Husimi functions. In (a),(c), and (e) the periodic points of
each ISS are marked by means of a black dot. The surrounding
distributions correspond to the ISSs at finite T (for
(a) T ¼ 0:058, for (c) T ¼ 0:12, and for (e) T ¼ 0:07). In (b),
(d), and (f) @eff ’ 0:082. Notice that for (e) and (f) p 2
½�30; 30�, while for the rest p 2 ½�20; 20�.
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classical Liouville distribution and the quantum Husimi
function. For B1 and T ¼ 0 I obtain O ’ 0:1, while for
T ¼ 0:058 the result is O ’ 0:87, the other two cases
behave the same way, resulting in O ’ 0:07 and O ’ 0:91
for T ¼ 0 and T ¼ 0:12 respectively in the C�1 case, and
O ’ 0:14 and O ’ 0:87 for T ¼ 0 and T ¼ 0:07 respec-
tively in the D�1 ISS.

I have found that the convergence to a quantum simple
attractor is not uniform with respect to @eff , but highly
dependent on the ISS in question. To illustrate this result
I show the QISS corresponding to the B1 case for @eff ’
0:246 in Fig. 2(a). It is clear that for this higher value of @eff
the QISS starts to resemble the neighboring chaotic attrac-
tor. On the contrary, when I study the QISS corresponding
toD�1 for @eff ’ 0:027 [see Fig. 2(b)] the chaotic nature of
the quantum attractor shows no sign of vanishing. On the
other hand, it is also very important to point out that the
QISS have great influence on the quantum chaotic attrac-
tors surrounding them. In fact, I have taken � ¼ 0:26 and
k ¼ 11:9 in the chaotic area A (according to [17] nomen-
clature), in the vicinity of the ‘‘shrimp‘‘ structure D�1.
Here the classical attractor resembles the quantum one
without the need of additional fluctuations, giving an over-
lap O ’ 0:73 at T ¼ 0. In this case the chaotic mixing is
enough to recover the quantum chaotic shape. But, most
importantly, the quantum chaotic attractor is very similar to
the corresponding QISS, their overlap [between the distri-
butions shown in Figs. 1(f) and 2(d)] being O ’ 0:99. This
suggests the idea that general quantum chaotic attractors
could be acceptably reproduced with just the classical in-
formation corresponding to a neighboring ISS plus thermal
fluctuations. This gives to the QISSs an even more relevant
role in the understanding of quantum dissipative ratchets
and also of quantum dissipative systems in general.

The influence of QISSs and the effect of thermal noise in
the ratchet current J ¼ hpi (where hi stands for either the
classical or quantum averages) can be seen in Figs. 3 and 4,
where I compare the classical and quantum J for the cases
of Fig. 1 and the chaotic attractor of Figs. 2(c) and 2(d).
The upper lines of Fig. 3 represent the B1 case. The dot-
dashed black curve corresponds to the classical current at
T ¼ 0, which stabilizes in a relatively short time (50 time
steps) when compared to the same curve for the C�1 case
in the same figure (in fact, this latter one stabilizes in more
than 250 time steps). In general, the ISSs have long tran-
sients, settling down in times 1 order of magnitude longer
than this. This seems to be the main reason for the B1 case
under scrutiny to show a quantum simple behavior in
contrast with the other cases. I am currently investigating
the details of this behavior [21].
In this Figure, the (green) gray full lines correspond to

the quantum current, while the black dashed thin lines
correspond to the classical J at finite T. The effects of
the thermal environment quickly stabilize this current. This
is specially evident in the C�1 case, which clearly loses
even the period 2 bumps exhibited by the lower dot-dashed
black line. Moreover, in both cases displayed in Fig. 3 the
agreement of the classical J at finite T with the quantum
current is excellent, reflecting what I have already shown
by means of the phase space distributions.
In Fig. 4 I make the same comparison as in Fig. 3, but in

this case for the QISS corresponding to the D�1 kind with
the chaotic attractor in its vicinity. Again, the classical
current for the ISS stabilizes very slowly (it takes around
700 time steps). On the other hand, the quantum J stabil-
izes very quickly (in 7–8 time steps) as does the classical
one at finite T (their agreement being excellent). We can
see that the classical current corresponding to the chaotic
attractor case also stabilizes very quickly, without the need
of additional fluctuations. In the classically chaotic case
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FIG. 2 (color online). In (a) I show the Husimi function for the
B1 QISS [see Figs. 1(a) and 1(b)] for @eff ’ 0:246. The same
(color) gray scale as in Fig. 1 is used. In (b) the D�1 QISS for
@eff ’ 0:027 is shown. In (c) and (d) the classical (T ¼ 0) and
quantum (@eff ’ 0:082) chaotic attractors, respectively, neighbor-
ing D�1, for which � ¼ 0:26 and k ¼ 11:9.
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FIG. 3 (color online). Classical and quantum current J as a
function of map time steps t. Black dot-dashed lines correspond
to classical values at T ¼ 0, black dashed thin lines to classical
values at the finite temperatures of Fig. 1, and (green) gray full
lines to the quantum values. Upper lines correspond to the B1

ISS, and lower ones to C�1.
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the stabilization of the current and its main features (like
the generic low values and lack of periodic fluctuations) are
already determined by the chaotic mixing.

In conclusion, I have found that QISSs have a funda-
mental role in the behavior of the current in quantum
dissipative ratchets, as ISSs have in their classical counter-
parts. This has been unveiled by means of analyzing a
paradigmatic system in the ratchet and chaos (classical
and quantum) literature. QISSs have the simple attractor
shape of the classical ISSs only in the few cases where the
time in which they stabilize is very short. But in general
they have an extended, chaotic attractor shape in phase
space. This has very important practical implications for
the currents measured with cold atoms in a periodic stand-
ing wave of light, systems where our model has direct
application (for example, sodium atoms in a laser field
with wave length 	 ¼ 589 nm). The QISSs could be ob-
served by means of state reconstruction techniques [22].
Moreover, I have found that the behavior of the QISSs can
be understood by means of just the classical information
contained in the corresponding ISSs plus thermal fluctua-
tions of the order of @eff . In addition, the quantum chaotic
attractors in their vicinity have a very similar structure.
This makes us conjecture that in general it should be
possible to approximate any quantum chaotic attractor by
means of the essential classical information contained in a
neighboring ISS (plus stochastic fluctuations). This is
expected to be a general result valid for any quantum
dissipative system which has a contractive (in phase space)
kind of noise and it will be the matter of future investiga-
tions [21].
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