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We investigate the validity of fluctuation theorems for an asymmetric rotor experiment in a granular

gas. A first state, with a Gaussian distribution of the angular velocity, is found to be well described by a

first order Langevin equation. We show that fluctuation theorems are valid for the injected work and for

the total entropy production. In a second state, the angular velocity distribution is double peaked due to a

spontaneous symmetry breaking: A convection roll develops in the granular gas, which strongly couples to

the rotor. Surprisingly, in this case, similar symmetry relations hold, which lead to a good prediction for

the height ratio of the two peaks.
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Under rather general conditions, the thermodynamic
description of non-equilibrium systems is constrained by
the consequences of the fluctuation relations [1]. In par-
ticular, the fluctuation theorem (FT) provides, for a system
in a nonequilibrium steady state, a quantitative symmetry
relation between the probability of having a positive fluc-
tuation for the entropy production in a time � and a
corresponding negative one:

ln

�
Pð�� ¼ þaÞ
Pð�� ¼ �aÞ

�
¼ �a 8 a for � � �c; (1)

where �c represents the largest characteristic time of the
system and �, a prefactor [2–5]. In general, the hypotheses
used to prove this theorem are not verified experimentally
and, therefore, it is not clear whether Eq. (1) holds or not.
Experimental tests of FTs have been mostly performed on
stochastic systems in contact with a thermal bath. In such
experiments, a FT is valid for the injected work into the
system or the total entropy production and the coefficient�
is directly related to the temperature of the thermal bath
� ¼ 1=kBT [6].

Experimental tests are particularly scarce and inconclu-
sive for another type of system for which FTs are believed to
hold, namely nonthermal dynamical systems. In these sys-
tems, the strong fluctuations come from the nonlinear inter-
action of many degrees of freedom of a dissipative system.
An interesting example of such a system is a granular gas,
which by its nature is already out of equilibrium due to the
dissipative character of the inelastic collisions. Experiments
searching for FTs in granular systems have been performed
[7], but their interpretation remains unclear [6]. It is a
challenge to study FTs in such a system and to test to
what extent the fluctuation relations can be satisfied.

In this Letter we will study FTs for a rotor immersed in a
granular gas. Eshuis et al. [8] showed that such a system
exhibits not only Brownian-like dynamics comparable to
a thermal system but also a state in which symmetry is
spontaneously broken and for which there exists no

thermal analogue. Here, we will show that FTs are relevant
to both states.
Experiment.—The rotor is composed of four vanes

(25� 60 mm2 each, made from a single piece of stainless
steel), precisely balanced around an axis which is con-
nected to the container by a low-friction ball bearing.
The granular heat bath consists of glass beads of diameter
d ¼ 4 mm (density � ¼ 2600 kg=m3), which are fluidized
by vertical vibrations of the bottom (z ¼ 0 at rest) with
amplitude a and frequency f such that the grains interact
dissipatively with the vanes. We present the results
obtained for a system of N ¼ 1000 particles (500 and
2000 particles have also been used) and for two different
heights of the axis above the bottom (h ¼ 51 mm and
h ¼ 75 mm). The natural dimensionless control parameter
of the granular heat bath is the shaking strength S ¼
4�2f2a2=ðghÞ, which represents the ratio of the typical
kinetic energy injected into the system by the vibrating
bottom and the potential energy of the particles at the height
of the axis of the rotor. Thegranular temperatureTg is defined

as the mean of the kinetic energy fluctuations per particle.
The angular position � of the vanes is measured using an
optical angle encoder, with an accuracy of1:9� 10�7 rad, at
a sampling rate of 1000 Hz (larger than the typical collision
rate, which is about 100 Hz). After the system has reached a
steady state, we start to record the position for typically
15 min, which is about 103 times the relaxation time of the
system. We repeat experiments several times with the same
conditions (S andh). Anasymmetry isvoluntarily introduced
in the system by coating the left-hand side of each vane with
rubber tape. This side will therefore be softer, diminishing
its coefficient of normal restitution. As a result, vanes are
expected to preferentially rotate in counterclockwise direc-
tion (positive �). Such a system behaves like a ratchet, as
explained in [8–13].
The dynamics of the system strongly depends on the

experimental parameters (height of the vanes h, shaking
strength S, and number of particles). Figure 1(a) presents
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two time series of the angular velocity ! ¼ _� of the rotor:
State I has an angular velocity that fluctuates around a
nonzero positive mean value (due to the symmetry-breaking
coating). In state II, the angular velocity is either positive or
negative, and there are switches from one state to the other.
This is a state in which, in addition to the symmetry-
breaking coating, there is a spontaneously broken symmetry,
which can be explained from the development of a convec-
tion roll in the granular gas, stabilizing the motion of the
vanes [8]. These two states will now be studied in detail.

State I.—In the first state, the dynamics of the angular
velocity ! can be decomposed into a constant positive
average value h!i and strong fluctuations �! � !� h!i
around this mean. To shed more light on the dynamics and
statistics, the power spectral density (PSD) of �! and the
probability density function (PDF) of ! are plotted in
Figs. 1(b) and 1(c). The Lorentzian shape of their PSD
and their Gaussian distribution indicate that the fluctua-
tions �! are identical to those in the absence of the ratchet
effect, as expected for a linear situation. The dynamics is
therefore likely to be well described by a first order
Langevin equation

I
d!

dt
¼ ��!þM@e þ 	; (2)

where I (¼ 7:2� 10�5 kgm2) is the angular moment
of inertia, � a viscous drag coefficient, and 	 a stochastic
noise, �-correlated in time, due to the random collisions
between the particles and the rotor. This description
is compatible with kinetic theory in the limit in which
the mass of the ratchet is much larger than the mass of
the particles [12]. The measurement of the variance of the
fluctuations, Tr=I, and the cutoff frequency of the PSD,
fc ¼ �=ð2�IÞ [related to the relaxation time of the system,
�0 ¼ 1=ð2�fcÞ] provides the value of the viscosity � �
7:0� 10�5 kgm2=s and the ratchet temperature Tr �
0:115 mJ, which is close to the granular temperature
[14]. The ratchet effect is described by adding a constant
torque M@e to the Langevin equation [12], which is iden-
tified with �h!i (� 4:5� 10�5 Nm) by time averaging of
Eq. (2). The subscript @e points to the fact that jM@ej is an
increasing function of j@ej, the difference in normal resti-
tution coefficient of the coated and uncoated side of each
vane. For the symmetric system, i.e., without coating,
h!i ¼ 0 and thus M@e ¼ 0.
Based on the Langevin description, the amount of

work injected into the rotor during a time � is W� ¼R
tþ�
t M@e!ðt0Þdt0 ¼ M@e��, where ����ðtþ�Þ��ðtÞ,

i.e., the symbol � from hereon represents the difference
measured over a time delay �. For W�, we expect a FT of
the form

ln

�
PðW�Þ
Pð�W�Þ

�
¼ ln

�
Pð��Þ
Pð���Þ

�
¼ M@e��

Tr

; � � �c;

(3)

where Pð��Þ is the PDF of ��. The expression in the left-
hand side of the equation is called the symmetry function.
Due to the Gaussianity of the distribution of!, the PDFs of
�� are Gaussian too, and the symmetry functions are
expected to be linear with �� for different values of �.
This is indeed found in experiment [Fig. 2(a)]. The slope,
�ð�Þ, is found to decrease with � and reaches the constant
value M@e=Tr expected from the FT Eq. (3) for � > 3 s,
which is approximatively three times the relaxation time
of the system. Thus we find that two independent measure-
ments—one from the PDF of Fig. 1(b) and one using
the FT Eq. (3)—lead to the very same value of the rotor
temperature Tr, hereby confirming the validity of the
FT Eq. (3).
We now turn to the fluctuations of the total (trajectory-

dependent) entropy production in a time span �, �stot,
as defined by Seifert in [15]. We follow [6] and first write
the dissipated heat Q� [16] as the injected work W� minus
the difference of the kinetic energy of the rotor Ek ¼ 1

2 I!
2

at the beginning and end point. The entropy change �sm in
a time span � is now defined as the dissipated heat divided
by the ratchet temperature
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FIG. 1 (color online). (a) Typical time series of the angular
velocity ! for state I [S ¼ 2:78 and h ¼ 75 mm (top, red)] and
for state II [S ¼ 2:15 and h ¼ 51 mm (bottom, blue)].
(b) Corresponding power spectral densities of the fluctuations
�!, which for both cases virtually overlap and are fitted well by
a Lorentzian. (c) Corresponding probability distribution functions
of!. For state I (red symbols), the PDF is well fitted by a Gaussian
(red line). For state II (blue symbols), there is a pronounced double
peak; the blue line is the result of Eqs. (6) and (7).
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Tr�sm � Q� � W� ��Ek: (4)

First, we note that for the symmetric system (i.e., without
the symmetry-breaking coating), the dissipated heat is
equal to �Ek;sym ¼ Tr�sm;sym, which is small but not

strictly zero. This contribution has to be subtracted from
the entropy change Eq. (4) in order to obtain the entropy
created by the presence of the external torque M@e. As
argued in [6], it is this last entropy that may be identified as
the total entropy production, i.e., �stot ¼ �sm � �sm;sym.

This quantity is interesting because it should satisfy
a detailed FT: The symmetry functions for �stot are ex-
pected to be equal to�stot itself for all values of �when the
system is in a steady state [15,17]. From the Langevin
equation (2), the total entropy takes the following form

Tr�stot ¼ M@e��� Ih!i�!: (5)

In Fig. 2(c) we present the symmetry functions for different
integration times �: We find that the PDFs are Gaussian
(not shown) and, most importantly, that the symmetry
functions lie on a straight line with slope one within
experimental errors, whatever the time delay � is. So in-
deed a detailed FT holds for the total entropy production.

State II.—In state II the dynamics is completely different
due to the coupling to a spontaneous convection roll in the
granular heat bath: The time series of Fig. 1(a), shows
fluctuations around two preferred velocities, corresponding
to the two rolls. As a result, in the PDF of! [Fig. 1(c)], two
distinct peaks appear. Their different heights reflect that
the system obtains a finite mean angular velocity h!i by
residing preferably around the positive peak—in contrast
to the shift of the entire PDF in state I. From Fig. 1(b)
we find that in both states the PSDs are almost exactly the
same and very well fitted by a Lorentzian. This indicates
that the fluctuations in each of the two peaks—and there-
fore the short time dynamics—are very similar to those
of state I.

This suggests the separation of the dynamics into two
parts: On a short time scale, ! fluctuates around a mean
value, with dynamics described by a Langevin equation
similar to Eq. (2), independent of the direction of the roll.
On a much larger time scale, a coupling between the
granular gas and the vanes induces collective motion, in
which every now and then, through a particularly strong
fluctuation, the mean value of ! quickly switches between
positive and negative, reversing both the sense of rotation
of the vanes and the roll. These reversals happen randomly
in time. The system stays a few seconds in each state as can
be seen in Fig. 1(a). Due to the asymmetric coating of the
rotor, reversals are easier to realize when the vanes are
rotating in the clockwise direction rather than counter-
clockwise, explaining why the system has a preference
for the latter [18].
Guided by the above considerations, wewrite the PDF of

! as the sum of two Gaussian distributions with the same
variance �2 ¼ Tr=I; one with mean value !0 þ!@e and
the other with �!0 þ!@e

Pð!Þ ¼ A

�
pþ exp

�
� I

2Tr

ð!� ð!0 þ!@eÞ2
�

þ p� exp

�
� I

2Tr

ð!� ð�!0 þ!@eÞ2
��

: (6)

Here, !@e stands for the shift due to the symmetry-
breaking coating (i.e., �!0 denote the locations of the
peaks without coating). The factors p� represent the
weight of each peak (the probability of each direction of

the convection roll), and the normalization factor A ¼
I=ð8�TrÞ1=2 has been chosen such that pþ þ p� ¼ 1 im-
plies

R
Pð!Þd! ¼ 1.

What can we learn from FTs for this very non-Gaussian
system? It seems reasonable to assume that if a FT exists, it
will be for the work done on short time scales, when the
system resides in either of the two peaks of the PDF of !.

FIG. 2 (color online). State I [S ¼ 2:78 and h ¼ 75 mm]: (a) The symmetry function lnðPð��Þ=Pð���ÞÞ versus �� for different
values of the time interval �. All are linear with��, such that we can compute their slopes�ð�Þ. (b)�ð�Þ as a function of �. In the limit
when � is larger than the relaxation time of the system, �ð�Þ is equal to M@e=Tr (dashed line), as expected from the steady state FT
Eq. (3). (c) The symmetry function lnðPð�stotÞ=Pð��stotÞÞ versus the total entropy production �stot for different values of �. As
predicted by the detailed FT, the data lie on a straight line with slope one (dashed line). In (a) and (c), the deviations from the linear
regime for large fluctuations are due to a lack of statistics in a region where the PDFs are at least two orders of magnitude smaller than
their maximum value.
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And indeed, in Fig. 3(a) (dashed blue line), we find that the
symmetry function for �� is linear in �� for � ¼ 0:01 s.
Since in this limit ! � ��=�, we may expect a similar
symmetry relation for !, which we plot in Fig. 3(b).
Indeed, ln½Pð!Þ=Pð�!Þ� / !, which is truly remarkable
in view of the peculiar shape of its distribution [Fig. 1(c)].
Computing the symmetry function from the double
Gaussian of Eq. (6), we find that it can only be linear if
the weights of the peaks obey

pþ
p�

¼ exp

�
2I!@e!0

Tr

�
; (7)

which then directly leads to the symmetry relation

ln
Pð!Þ
Pð�!Þ ¼

2I!@e

Tr

!: (8)

From the slope of the experimental symmetry function
[Fig. 3(b)], which, with Tr ¼ 0:062 mJ leads to !@e ¼
0:372 rad=s, combined with !0 ¼ 1:8 rad=s from the
PDF of the symmetric system, we compute pþ and p�
and plot the resulting theoretical PDF in Fig. 1(c). The
agreement with the experimental PDF is good, except for
angular velocities close to zero.

We now return to the symmetry function of �� in
Fig. 3(a): For the smallest value (� ¼ 0:01 s), we find a
symmetry relation. This is because the changes �� are
dominated by the fluctuations, and the reversals are just
rare events without large consequences for the value of��.
For the intermediate value � ¼ 3 s, there is no valid sym-
metry relation. This stands to reason because when the
integration time � increases, the probability that it contains
at least one reversal increases as well. �� is then likely to
include a reversal, and there is no reason to consider the
system to be in a steady state, which is a prerequisite for a
symmetry relation to hold. There are two distinct regimes:
One at small j��j, dominated by reversals, and another
at large j��j * !0�, a distance which in the given
time interval is unlikely to be reached when the trajectory
includes one or more reversals [dotted red line in
Fig. 3(a)]. For very large �, typically many reversals are
included in each ��, and we can consider the system to be
in a steady state again. Indeed, for � ¼ 10 s the PDF is
Gaussian (not shown) due to the central limit theorem, and
the symmetry function tends to become linear [Fig. 3(a),
solid black line]. However, the experimental slope is
smaller than the slope M@e=Tr one would expect based
upon Eq. (3). This may be because the entropy production
depends on two parts: one is the work M@e�� and the
second part is coming from another variable responsible
for the reversals, which is not included here (cf., the
theoretical work in [19]).
In conclusion, we have investigated the validity of FTs

in two different states of an asymmetric rotor experiment in
a granular gas. The first state, with a Gaussian PDF for the
angular velocity, is found to be well described by a first
order Langevin equation and therefore analogous to a
Brownian system of temperature Tr. This is reflected in
the observation that the FT is valid at large � for the
injected work and for all � for the total entropy production.
In the second state, the PDF of ! is double peaked due to
convection rolls developing in the granular gas. Here,
symmetry relations are found for very large and very small
�, of which the latter leads to a good prediction of the ratio
of the height of the two peaks.
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