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We study classical heat conduction in a dissipative open system composed of interacting oscillators. By

exactly solving a twisted Fokker-Planck equation which describes the full counting statistics of heat flux

flowing through the system, we identify the geometric-phase-like effect and examine its impact on the

classical heat transport. We find that the nonlinear interaction as well as the closely related temperature

dependence of system parameters are crucial in manifesting the geometric-phase contribution of heat flux.

Finally, we propose an electronic experiment based on RC circuits to verify our theoretical predictions.
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Understanding the general features of transports is one
of the main goals in nonequilibrium statistical physics.
Among many others, time-dependent driven transports
like driven particle (mass, probability) transport and driven
heat conduction are attracting increasing attention. In par-
ticular, the latter is of special interest [1–9] because of both
its theoretical and practical importance in phononics [10],
where one may utilize temporal modulations to alterna-
tively achieve flexible dynamic control of thermal energy
in various phononic devices [10].

In driven quantum systems, an intrinsic geometric contri-
bution of the phase of a wave function will be emergent [11]
and it has been proved to have profound effects on many
physical properties including thermal related ones [12–14].
Similar geometric contributions have been also uncovered in
thedriven transport of noninteractingparticles [15–17].These
pioneering efforts culminated in the discovery of geometric-
phase-like contribution in generating functions [18,19],
which then inspired the identification of geometric heat flux
in a single quantum junction [9]. Namely, even under slow
modulations, heat flux and fluctuations are not merely a
simple temporal average of their static counterparts, but con-
tain an extra geometric contribution regardless of driving
rates.

Unlike noninteracting particle transport, heat conduction
in solid is typically modeled by interacting lattices with
reservoirs, where energy is transported in the absence of
particle flow [20]. Therefore, whether and how the geometric
contribution can emerge in classical heat conduction is still an
open question. Moreover, the nonlinearity (anharmonicity)
has been found of special importance in phononic devices
[10]. However, the role of nonlinear interaction in the mani-
festation of geometric heat flux is still not yet explored,
although works about time-dependent classical heat conduc-
tion in interacting lattices have alreadybeen carried out [2–7].

In this Letter, we shall address the above mentioned
objectives by exactly solving a twisted Fokker-Planck equa-
tion, which describes the full counting statistics of heat flux
flowing through a classical open system of interacting os-
cillators. We identify the geometric-phase effect on generat-
ing functions and examine its impact on the classical heat
transport. In particular, we find that the nonlinearity of
interaction as well as the related temperature dependence
of system parameters are crucial to the manifestation of
geometric heat flux. Otherwise, for a linear system without
temperature-dependent parameters, the geometric-phase ef-
fect is absent or only observable in high order heat fluctua-
tions. Furthermore, by pointing out the analogy of a coupled
RC electric circuit and interacting oscillators, we are able to
implement an electric experiment to verify the theoretical
predictions of geometric-phase effects in heat transport.
We start with a typical interacting open system: two

coupled Brownian oscillators in contact with two heat
baths, as shown in Fig. 1. The vibrational dynamics is
described by a set of Langevin equations: mi €xi ¼
�@xiVðx1; x2Þ � �i _xi þ �i, (i ¼ 1, 2), where mi and xi
are the mass and displacement of oscillator i. Vðx1; x2Þ
denotes the interaction potential. �i depicts the viscosity of
bath i, or say, the coupling strength between oscillator i and
bath i. �i is the white noise with variance h�iðtÞ�jðt0Þi ¼
2�iTi�ij�ðt� t0Þ, where Ti is the temperature of bath i.

QðtÞ ¼ R
t
0 @x1Vðx1; x2Þ _x1dt0 is defined to describe the heat

FIG. 1 (color online). A sketch of two coupled classical
Brownian oscillators in contact with two Langevin heat baths.
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transferred from heat bath 1 to 2 during time t. This vibra-
tional dynamics is a typical interacting model for heat
transport which has been also used to describe the
well-known Feynman ratchet-pawl model [21]. For micro-
dynamics at low Reynolds number where oscillators either
possess nanosizes or move in an extremely viscous media,
the inertia terms are negligible [22], and in turn we have an
overdamped dynamics:

�1 _x1 þ @x1Vðx1; x2Þ ¼ �1; �2 _x2 þ @x2Vðx1; x2Þ ¼ �2:

(1)

For an harmonic coupling Vðx1; x2Þ ¼ kðx1 � x2Þ2=2 with
spring constant k, the system can be described by a Fokker-
Planck equation [23]:
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where yðtÞ ¼ x1ðtÞ � x2ðtÞ. Then the transferred heat from
bath 1 to 2 within time t is QðtÞ ¼ R

t
0 dt

0kyð�1 � kyÞ=�1.

To study the time-dependent driven heat transport, we
introduce the characteristic function of the joint probability
�ðy;Q; tÞ, defined as zðy; �; tÞ ¼ R1

�1 dQei�Q�ðy;Q; tÞ.
This characteristic function satisfies a twisted Fokker-
Planck equation:

@tzðy; �; tÞ ¼ L�ðtÞzðy; �; tÞ; (3)

where, following derivations from [24,25], one can find,
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The twisted Fokker-Planck operator L�ðtÞ is generally

time-dependent, wherein parameters kðtÞ, �jðtÞ and TjðtÞ
could be subject to adiabatically cyclic modulations. The
‘‘adiabatic’’ here means the modulation period Tp is much

larger than the system’s characteristic time scale of relaxa-
tion, Tc, namely [26],

Tp � Tc ¼ �1�2

kð�1 þ �2Þ : (5)

It is easy to verify that Eqs. (3) and (2) have the same
initial condition zðy; �; 0Þ ¼ �ðy; 0Þ. When � ¼ 0, we
have zðy; 0; tÞ ¼ �ðy; tÞ from the definition and in turn
Eq. (3) reduces to Eq. (2). Integrating over the degree of
freedom y in zðy; �; tÞ, we obtain the characteristic function
of Q: Zð�; tÞ ¼ R

dyzðy; �; tÞ ¼ R
dQei�QPðQ; tÞ, with

PðQ; tÞ ¼ R
dy�ðy;Q; tÞ. Thus, the cumulant generating

function is Gð�Þ ¼ limt!1t�1 lnZð�; tÞ, which generates
the n-order cumulant of heat fluctuations:
limt!1hhQnii=t ¼ @ni�Gð�Þj�¼0.

Following [18], the cumulant generating function of
adiabatically driven system can be separated into two
parts—the dynamic contribution and the geometric one:
Gð�Þ ¼ limt!1 1

t lnZð�; tÞ ¼ Gdyn þGgeom. The dynamic

contribution, Gdyn ¼ 1
Tp

RTp

0 dt�0ð�; tÞ, with �0ð�; tÞ
denoting the ground-state eigenvalue of L�ðtÞ, survives
whenever system parameters are static, or experience
single or multiple modulations, whereas the appearance
of the geometric contribution Ggeom requires at least two

parameter modulations. For the case of periodically driving
pairs ðu1ðtÞ; u2ðtÞÞ, which could be chosen from any two of
k, �j, Tj, we have [26]

Ggeom ¼ � 1

Tp

ZZ
u1u2

du1du2F u1u2ð�Þ; (6)
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where ’0ðc 0Þ denotes the corresponding left(right)
ground-state eigenfunction, and the subscript u1u2 denotes
the integral area enclosed by the modulating contour.
Clearly, F u1u2ð�Þ has the physical meaning of curvature

of the parameter space (u1, u2) for L�. It is of pure

geometric origin and is independent of the modulation
speed. Mathematically,Ggeom is an analog of the geometric

Berry phase [19] in quantum mechanics, where the wave
function will gain an extra phase after a cyclic evolution
[27,28]. Similarly, in the full counting statistics of cyclic
driven systems, the cumulant generating function (analog
of phase) in the exponent of the characteristic function
(analog of wave function) will also gain an additional
term [18,19]. Both extra terms share the similar geometric
origin from the nontrivial curvature in the system’s pa-
rameter space. In turn the nth cumulant of heat fluctuations
has two separate contributions as well [9,18]:

lim
t!1

hhQnii
t

¼ @nGdyn

@ði�Þn
���������¼0

þ@nGgeom

@ði�Þn
���������¼0

: (8)

Of prime interest is the first cumulant, the average heat flux
J ¼ Jdyn þ Jgeom, with

Jdyn ¼ 1

Tp

Z Tp

0
dt

@�0ð�; tÞ
@ði�Þ

���������¼0
; (9)

Jgeom ¼ � 1

Tp

ZZ
u1u2

du1du2
@F u1u2ð�Þ
@ði�Þ

���������¼0
: (10)

Apparently, to study the geometric heat flux as well as
other interest transport properties, we need to solve the
eigenproblem of L�, which however spans the infinite-

dimensional Hilbert space and is usually difficult to tackle.
Fortunately, after some algebra, we can cast Eqs. (3) and
(4) to the Schrödinger’s eigenproblem of quantum har-
monic oscillator [26], with the help of which we analyti-
cally obtain the ground-state eigenvalue for L�ðtÞ,

�0ð�; tÞ ¼ rð1� �Þ=2; (11)

and the right ground-state eigenfunction,
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c 0ðy; �; tÞ ¼ exp

�
� rþ r�� 2i�kD1

4D
y2
�
; (12)

as well as the corresponding left eigenfunction,

’0ðy; �; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
r�

2�D

s
exp

�
r� r�� 2i�kD1

4D
y2
�
; (13)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2D1D2=r

2ð� �þ ið1=T2 � 1=T1ÞÞ�
p

,
r¼ r1þr2, D¼D1þD2 with rj¼k=�j and Dj ¼ Tj=�j.

Substituting Eq. (11) into Eq. (9), we see that the dy-
namic heat flux is just the temporal average of its static

counterpart: Jdyn¼T�1
p

RTp

0 dtJstðtÞ, with Jst�@i��0j�¼0¼
kðT1�T2Þ=ð�1þ�2Þ, where the integral concerns all pos-
sible time-dependent parameters. It is interesting to notice
that generally given T1ðtÞ ¼ T2ðtÞ, not only the average,
but all the odd order cumulants of the dynamic flux
will vanish as well, due to the even symmetry �0ð�Þ �
�0ð� �þ ið1=T2 � 1=T1ÞÞ ¼ �0ð��Þ.

Substituting Eqs. (12) and (13) into Eq. (7) and in turn
Eq. (10), we can then study the geometric heat flux Jgeom
under any pair-parameter manipulations. We first consider a
special case of two system-bath couplings �1ðtÞ, �2ðtÞ being
modulated. In this case, we find the curvature F �1�2

� 0,

that is, no matter how arbitrarily one drives these two
couplings, the geometric contributions to all cumulants of
heat transport are always zero. The geometric effect is absent
in the case of merely modulating system-bath couplings.
Similar phenomenon is also observed in quantum heat trans-
port [9], which implies that this may have connection with
some universal pumping restrictions [29] in open systems.
Furthermore, this absence of geometric heat flux may relate
to a no-pumping theorem of a different quantity, probability
current, in closed driven systems without explicitly connect-
ing with heat baths [30]. It shows that, in terms of our Eq. (2),

the probability current is absent when kð1=�1þ1=�2Þ
ðT1=�1þT2=�2Þ is time

independent. In fact, when T1 ¼ T2, this ratio is indeed
independent of �i so that there is no pumping of probability
current no matter how we drive (�1, �2).

In the case of modulating any other combination of two
system parameters, however, the geometric contribution
emerges. For example, if we modulate one system-bath

coupling �2ðtÞ and one bath temperature T1ðtÞ, the nonzero
first derivative of curvature, @i�F �2T1

j�¼0 ¼ ��1�2=

½2ð�1 þ �2Þ3� � 0 can induce nonzero geometric heat
flux Jgeom � 0. For another example, if two baths are

kept isothermal T1 ¼ T2 ¼ T0, then the dynamic heat
flux will be always zero, Jdyn ¼ 0. Even so, we still can

realize the nonzero heat transport through the geometric
contribution by modulating, like (k, �2), so that J ¼
Jgeom ¼ T�1

p

RR
k;�2

dkd�2f�1T0=½2kð�1 þ �2Þ2�g.
The most typical modulation is driving bath tempera-

tures (T2, T1) [3–6], because implementing this protocol is
much easier than modulating kðtÞ and �jðtÞ in practice. The
curvature for this two-temperature driving reads

F T2T1
¼ �1�2ð�2 � �1Þði�Þ2

2ð�1 þ �2Þ3�3
: (14)

When the couplings are symmetric, �2 ¼ �1, one can see
that F T2T1

� 0. That is, the geometric-phase effect is

absent in the symmetric linear (harmonic) system.
Interestingly, even when two couplings are asymmetric,
�2 � �1, we find @i�F T2T1

j�¼0 ¼ 0 in spite of nonzero

F T2T1
, so that the geometric heat flux is still vanishing,

Jgeom � @i�Ggeomj�¼0 ¼ 0. In other words, although the

geometric effect exists in the classical asymmetric linear
system, its contribution is not observable if one measures
only the average flux. The geometric effect can only mani-
fest itself in the higher order heat fluctuations, like the shot
noise of currents, i.e., @2i�Ggeomj�¼0 / @2i�F T2T1

j�¼0 � 0.

Recalling the modulation (�2, T1) can induce the non-
zero geometric heat flux, we speculate that as long as the
viscosity �2 is temperature dependent, the modulation (T2,
T1) can be effectively equal to the modulation (�2, T1). As
a consequence, in such systems of temperature-dependent
viscosity, merely modulating (T2, T1) may produce non-
zero curvature thus nonzero geometric heat flux. In fact,
viscosity is generally temperature dependent [31].
Phenomenologically, we can assume �j ¼ �0 þ aTj

n,

with j ¼ 1, 2. Thus for the typical modulation (T2, T1),
we indeed obtain the nonzero geometric heat flux

Jgeom ¼ 1

Tp

ZZ
T2T1

dT2dT1

anð�0 þ aT1
nÞð�0 þ aT2

nÞðT1
n�1 þ T2

n�1Þ
2ð2�0 þ aT1

n þ aT2
nÞ3 : (15)

Clearly, the temperature dependence plays a key role for the
manifestation of geometric effect. Given amodulation cycle,
the geometric heat flux Jgeom vanishes when the temperature
dependency a ! 0, while Jgeom increases to a saturated
value as a increases. When n ¼ 0, �j also becomes tem-

perature independent, and in turnJgeom becomes zero aswell.
Considering the intrinsic effective temperature depen-

dencies of system parameters are ubiquitous in nonlinear
interacting oscillators [32,33], we thus speculate that
with the help of nonlinearity, the existing geometric

effect is able to manifest itself into the geometric heat
flux as well. Therefore, we further consider the FPU-	
model [10], with nonlinear interacting potential:

Vðx1; x2Þ ¼ k1
2 ðx1 � x2Þ2 þ k2

4 ðx1 � x2Þ4. As we shall see

in what follows, the nonlinear strength k2 can induce
effective temperature dependence of system parameters
[32,33] and is the crucial ingredient to manifest geomet-
ric heat flux.
In Fig. 2, we numerically simulate Eq. (1) and calculate

the average geometric heat Qp � JgeomTp, defined for a
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driving cycle. Given the temperature driving protocol
T2 ¼ 0:09 þ 0:06 cosð2�t=Tp þ �=4Þ, T1 ¼ 0:09þ
0:06 sinð2�t=Tp þ �=4Þ, we have a zero dynamic flux

zero but a nonzero Qp. When Tp becomes large (adiabatic

limit), Qp saturates to a fixed value independent of Tp,

which indicates that it is purely a geometric property.
The geometric heat per driving cycle does not rely on the
driving rate, but only depends on the geometry of the
driving contour in parameter spaces. The deviations of
Qp from the fixed value at the fast driving regime are

due to the breakdown of the adiabatic precondition.
The inset of Fig. 2 verifies that when the nonlinear

interaction reduces to harmonic coupling (k2 ¼ 0), the geo-
metric contribution disappears (Jgeom ¼ 0). Only with the

help of nonlinearity, the geometric effect of temperature
modulations can manifest itself into the heat flux.
Moreover, increasing k2 can enhanceQp, until to a saturated

value, which coincides qualitatively with the behavior of
the analytic result Eq. (15), by increasing a. In fact, from the
viewpoint of nonequilibrium Green’s functions [34], the
nonlinear interaction effect in thermal transport is reflected
in the temperature-dependent effective self-energies, which
in our case are exactly the temperature dependent �i.

Although we focus on a two-coupled-oscillator system at
the moment, it could be straightforward to generalize the
above analysis into arbitrarily long coupled-oscillator model
with inertial terms, of which the eigenvalues and eigenvec-
tors of the twisted Fokker-Planck operator can be obtained
in terms of appropriate phonon Green’s functions [25].

Now, we shall examine the previous studies to see
whether it is justified for neglecting geometric heat flux.
In [3,4], only one bath temperature is under cyclic manipu-
lation so that the absence of geometric heat flux is justified,
because for cyclic driving, the manifestation of geometric
effect requires at least two parameter modulations in order
to enclose a nonzero area in the parameter space. The same
is true in [7], where the interacting lattice is only cyclically
driven by one mechanical force. In [4–6], although two

bath temperatures are modulated, they are varying either
isothermally T1 ¼ T2 ¼ T0 þ �TðtÞ [5] or inversely T1 ¼
T0 þ �TðtÞ, T2 ¼ T0 ��TðtÞ [4,6]. In this way, the modu-
lation contour only closes as a line segment. Therefore, the
absence of geometric heat flux is also justified.
In the last part, we would like to propose an experimental

implementation to demonstrate our predictions on manifes-
tation of geometric effect in classical heat transport through
coupled oscillators. In view of the well-known electric anal-
ogy of interacting oscillators’ Brownian motion [23,35], we
are able tomap the oscillator system into aRC circuit, where
two resistors of resistance Rj are arranged in parallel with a

capacitor of capacitance C, as shown in Fig. 3(a). The left
(right) circuit part is subjected to a thermal reservoirs of
temperature T1 (T2), which generates a Gaussian voltage
fluctuation �V1 (�V2), so called Johnson-Nyquist noise,
with variance h�ViðtÞ�Vjðt0Þi ¼ 2RiTi�ij�ðt� t0Þ [23,35].
qj denotes the charge going through the resistor Rj and

dqj=dt is the corresponding electric current. Consequently,

the dynamics of this RC circuit is described by

R1dq1=dtþ ðq1 � q2Þ=C ¼ �V1;

R2dq2=dtþ ðq2 � q1Þ=C ¼ �V2: (16)

Note that Eq. (16) is of a similar form as the overdamped
dynamics Eq. (1) for interacting oscillators. The heat trans-

FIG. 2 (color online). Nonlinear effect on manifestation of
geometric effect in classical heat transport for FPU-	 model.
k1 ¼ 0:5, �1 ¼ �2 ¼ 5. The physical value correspondences of
those dimensionless units can be found in Ref. [10]. The error
bar denotes the standard derivation of 25 times simulations, each
is averaged over 106 periods.

FIG. 3 (color online). (a) A parallel RC electric circuit
subject to Johnson-Nyquist noises. The analogy with two
coupled Brownian oscillators with heat baths is reflected by
the parameter correspondences: ðqj; Rj; 1=C; �VjÞ $
ðxj; �j; k; �jÞ. (b) Manifestation of geometric effect for classical

heat transport in RC electric circuit with temperature-dependent
resistances. (c) Qp ¼ JgeomTp as a function of �T. The simula-

tions are well fitted by ��T2=ð8T0Þ, approximated from
Eq. (17). Parameters are a ¼ 10 k�=K, C ¼ 1 pF, T0 ¼ 300 K.
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ferred over time t now is analogously defined as QðtÞ ¼R
t
0 _q1ðq1 � q2Þ=Cdt0, which actually is the charging work

done by the left reservoir on the capacitor. Thereafter, we can
modulate CðtÞ, RjðtÞ, TjðtÞ to test our predictions.

Nonlinear capacitor can be used to simulate the nonline-
arity effect. To mimic the related temperature-dependent
viscosity, we can choose resistors of temperature-dependent
resistance, e.g., Rj ¼ aTj, with contacting them to their

respective reservoirs. From Eq. (15), we then have

Jgeom ¼ 1

Tp

ZZ
T2T1

dT2dT1

T1T2

ðT1 þ T2Þ3
: (17)

For cyclicmodulation:T2 ¼ T0 þ�T cosð2�t=Tp þ �=4Þ,
T1 ¼ T0 þ �T sinð2�t=Tp þ �=4Þ, we will have zero Jdyn
but nonzero Jgeom. Although this geometric heat flux is

independent of C and Rj, the adiabatic precondition Eq. (5)

requires Tp � Tc ¼ CR1R2=ðR1 þ R2Þ. Assume we use

a ¼ 10 k�=K, C ¼ 1 pF, T0 ¼ 300 K, we will have the
adiabatic condition Tp � Tc � 3 
s. Analytic results are

verified by numerical simulations of Eq. (16), as plotted
in Fig. 3(b). Clearly, for Tp ¼ 20 
s, the geometric heat

per cycle already reaches the adiabatic limit. Therefore, as
long as the systemevolves a long time, i.e.,with largenumber
of cycles, we can accumulate a large geometric heat, e.g.,
for Tp ¼ 20 
s,�T ¼ 50 K,Qp ¼ 0:283 meV, after each

minute we can have 847 ev. Moreover, if we scale up many
RC circuits in parallel, we are able to obtain even larger
geometric heat flux. Alternatively, by increasing the modu-
lation amplitude, one can also increase geometric heat flux,
as shown in Fig. 3(c).

Given the fact that the fluctuation theorems in electric
circuits [36] as well as the energy rectification have been
experimentally realized in a nonlinear electrical transmission
line [37], we believe that our prediction of geometric-phase
effect on heat transport can be also experimentally validated
in a foreseeable future. Furthermore, as our ability to design
and manipulate nano or microsized systems improves, we
believe that the present study of geometric energy (heat) flux
could provide a new means of energy harvesting by harness-
ing the ubiquitous cyclic changes in the Universe.
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