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By introducing a new stochastic integral, we investigate the energetics of classical stochastic systems

driven by non-Gaussian white noises. In particular, we introduce a decomposition of the total energy

difference into the work and the heat for each trajectory, and derive a formula to calculate the heat from

experimental data on the dynamics. We apply our formulation and results to a Langevin system driven by

a Poisson noise.
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Introduction.—Stochastic processes driven by non-
Gaussian noises are shown to be powerful to analyze
various natural and social phenomena: the shot noise in
electrical circuits [1], Lévy flights of bumblebees [2] and
human mobilities, [3] and random walks in finance and
econophysics [4,5]. Moreover, non-Gaussian effects have
been discussed for small thermodynamics systems such as
biological molecular machines. For example, a non-
Gaussian white noise has been used for modeling directed
transport in Brownian motors [6,7], and the Adenosine
triphosphate (ATP) reception by red blood cell membranes
[8,9] has been modeled in terms of non-Gaussian noises.
This Letter aims to introduce a new stochastic integral for
non-Gaussian processes and apply it to small thermody-
namic systems.

Recent progress in experimental technique is causing
growing interest in small thermodynamic systems [10]. In
such systems, thermodynamic quantities become stochastic
due to environmental fluctuations that can be non-Gaussian.
The thermodynamic energy balance in a single trajectory has
been formulated by stochastic energetics [11] in which ther-
modynamic quantities, such as work and heat, are defined for
each trajectory [12]. Stochastic energetics has been widely
applied to theories [13–22] and experiments [23–28] of
modern nonequilibrium statistical mechanics.

For Gaussian processes, it has been established that the
Stratonovich-type stochastic calculus is consistent with the
stochastic energetics [11]. In fact, the Stratonovich calcu-
lus has been used for experimental and numerical verifi-
cations of nonequilibrium equalities such as the fluctuation
theorem [23–28]. This is because the ordinary
differential calculus, such as the chain rule df=dt ¼
ðdf=dxÞðdx=dtÞ, is satisfied for the Stratonovich stochastic
calculus. In contrast, the Itô-type stochastic calculus needs
an alternative formula, which is known as the Itô rule,
instead of the ordinary chain rule. So far, however, stochas-
tic energetics for non-Gaussian processes has not been fully
investigated. It is remarkable that, as will be shown later,
the Stratonovich calculus is inadequate to formulate the
stochastic energetics for non-Gaussian processes.

In this Letter, we introduce a new stochastic integral,
with which the ordinary differential calculus is applicable
to non-Gaussian processes. Based on this, we investigate
the decomposition of the total energy difference into the
work and the heat for each trajectory and derive a formula
that is applicable to measurements of the heat in experi-
ments. We show that our stochastic energetics is consistent
with the first law of thermodynamics.

Stochastic integrals.—Let �̂ðtÞ be a white noise with

h�̂ðtÞi ¼ 0 and h�̂ðtÞ�̂ðsÞi ¼ �ðt� sÞ, where the bracket
denotes the ensemble average of a stochastic variable.

We consider a stochastic differential equation dX̂ðtÞ=dt ¼
aðX̂ðtÞÞþ bðX̂ðtÞÞ�̂ðtÞ, where X̂ðtÞ is the phase-space

point of a Brownian particle, and aðX̂ðtÞÞ, bðX̂ðtÞÞ are

arbitrary functions of X̂ðtÞ. The stochastic differential

equation can be rewritten as the integral form X̂ðtÞ ¼ X̂0 þR
t
0 dsaðX̂ðsÞÞþ

R
t
0 ds�̂ðsÞbðX̂ðsÞÞ, where the last term on

the right-hand side (rhs) involves a stochastic integral. In
usual stochastic calculus for Gaussian processes, we use
one of the following two definitions:

Z t

0
ds�̂ðtÞ � bðX̂ðtÞÞ � lim

�t!þ0

Xn
i¼1

�t�̂ðtiÞbðX̂iÞ; (1)

Z t

0
ds�̂ðtÞ�bðX̂ðtÞÞ� lim

�t!þ0

Xn
i¼1

�t�̂ðtiÞb
�
X̂iþ X̂iþ1

2

�
; (2)

where the symbols � and � denote the Itô calculus and the
Stratonovich calculus, respectively, and �t � t=n, ti �
i�t, X̂i � X̂ðtiÞ. The term �t�̂ðtiÞ is shorthand for

�ŴðtiÞ � Ŵðtiþ1Þ � ŴðtiÞ, where ŴðtÞ � R
t
0 ds�̂ðsÞ is

the Wiener process.
Our strategy to define the new stochastic integral for

non-Gaussian processes is the white noise limit of a non-
Gaussian colored noise. First, we construct the colored
noise by using white noises. Let � be a time constant to
characterize the correlation time of the noise, and

let �t�̂ðtiÞ be shorthand for �L̂ðtiÞ � L̂ðtiþ1Þ � L̂ðtiÞ,
where L̂ðtÞ � R

t
0 ds�̂ðsÞ is the Lévy process. We define the

colored noise as
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�t�̂�ðtiÞ � 1

l

Xl�1

j¼0

�t�̂ðti�jÞ; (3)

where l � �=�t is assumed to be an integer. The correla-

tion of the noise satisfies h�̂�ðtÞ�̂�ðsÞi ¼ 0 only if jt� sj �
�. We call this manipulation � smoothing. For example, the

white Poisson noise �̂ðtÞ ¼ P
i�ðt� t̂iÞ, where each

Poisson flight happens at t̂i, is used to construct the colored
noise as shown in Fig. 1.

Introducing a new symbol �, we propose the following
stochastic integral for non-Gaussian processes as a limit
of the colored noise:

Z t

0
ds�̂ðtÞ�fðX̂ðtÞÞ� lim

�!þ0
lim

�t!þ0

Xn
i¼1

�t�̂�ðtiÞfðX̂ðtiÞÞ; (4)

where fðxÞ is an arbitrary function. We refer to this integral
as the � integral or the � calculus. Correspondingly,
we interpret the stochastic differential equation with the
� integral as

dX̂ðtÞ
dt

¼ aðX̂ðtÞÞþ bðX̂ðtÞÞ � �ðtÞ: (5)

The two limits in Eq. (4) are not commutable. In the Itô
integral, the limits are taken simultaneously �t ¼ � !
þ0. On the contrary, the limit of �t ! þ0 is taken before
the limit of � ! þ0 in our formulation. We note that our
integral is equivalent to the Stratonovich integral for
Gaussian processes [29].

Next, let us discuss the transformation formula from the
� integral to the Itô integral. By using Hänggi’s functional
formula [30,31], we obtain (see the Supplemental Material
for a derivation [32])

dL̂ðtÞ � fðX̂ðtÞÞ ¼ X1
n¼0

dL̂nþ1ðtÞ
ðnþ 1Þ �

��
bðxÞ @

@x

�
n
fðxÞ

��������x¼X̂ðtÞ

�
;

(6)

where bðX̂ðtÞÞ describes the same function in Eq. (5) and

fðX̂ðtÞÞ is an arbitrary function of X̂ðtÞ. For Gaussian
processes, Eq. (6) reduces to the transformation formula
from the Stratonovich integral to the Itô integral because

dL̂n ¼ 0 holds for n � 3. Although other types of � smooth-
ing can be used to construct the colored noise, Eq. (6) does
not depend on the way of the � smoothing [33]. We note that
Eq. (6) can be regarded as a straightforward generalization of

the result in Refs. [34,35] in which Eq. (5) has been trans-
formed into the Itô type.
As a simple example, we apply the � calculus to the

Black-Scholes equation driven by a Poisson noise [36]

dX̂

dt
¼ ð�1þ �̂ÞX̂; (7)

where �̂ ¼ �̂� �Iwith a Poisson noise �̂ characterized by
its intensity I and transition rate �. The Poisson noise is a
typical non-Gaussian noise. In fact, any noise can be
decomposed into the combination of Gaussian and

Poisson noises [37]. If we define �̂ X̂ on the rhs of

Eq. (7) based on the � integral as �̂ � X̂, then the solution

of Eq. (7) equals the following quantity: Ŷ ¼ exp½�tþR
t
0 ds�̂ðsÞ�, which is the formal solution of the Black-

Scholes equation with the ordinary differential calculus.
In contrast, if we adopt the Stratonovich integral to define

the rhs of Eq. (7), its solution does not equal Ŷ. Figure 2

shows the numerical results on Z � hŶ=X̂i for the cases of
the � integral and the Stratonovich integral. The � smooth-
ing is performed by the definition of Eq. (3). As I increases,
Z becomes different from 1 for the Stratonovich integral
due to the non-Gaussian property of the noise. In contrast,
the � calculus keeps Z � 1 independently of the value of I.
We also note that the result of the Itô calculus is ranged
around Z ¼ 5. These results imply that neither Itô nor
Stratonovich calculus is obtained as the white noise limit
of a colored noise.
Stochastic energetics for non-Gaussian processes.—We

now apply the � integral to formulate stochastic energetics
for non-Gaussian processes. Let us consider the following
underdamped Langevin equations:

smoothing

-function
delta-limit

FIG. 1. A schematic of the � smoothing.

 0.5

 1

 0  0.5  1  1.5

Stratonovich
            -integral

FIG. 2 (color online). Numerical results on the consistency
between Eq. (7) and Ŷ. We fix the variance of the Poisson noise
�I2 ¼ 4:0 and simulate the equation until t ¼ 1:0 with � ¼
0:001. As I increases, the difference between the � integral
and the Stratonovich integral becomes significant. In the
Gaussian limit of I ! 0, Z is expected to equal unity in both
calculuses as denoted by an open circle.
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dp̂

dt
¼��

m
p̂�@Uð�;xÞ

@x

��������x¼x̂
þgðx̂; p̂Þ� �̂; dx̂

dt
¼ p̂

m
; (8)

where �̂ is a non-Gaussian noise whose mean value is zero,
x̂ is the position of the particle, p̂ is its momentum, and
Uð�; xÞ is the potential with an external parameter �, such
as the intensity of optical tweezers. If gðx; pÞ is constant,
the noise is called additive; otherwise, it is called multi-
plicative. It is known that Brownian motion near a wall can
be characterized by a multiplicative noise [38]. The de-
tailed balance condition is not assumed in this Letter, and
the following results can be applied to athermal systems.
We note that the detailed balance condition in athermal
systems has been studied in Ref. [39].

Let us first define the thermodynamic quantities for each
trajectory. We divide the total energy difference into the
following two parts:

dŴ ¼ @U

@�

��������x¼x̂
d�;

dQ̂ ¼
�
��p̂2

m2
þ �̂ � gðx̂; p̂Þp̂

m

�
dt;

(9)

where Ŵ is the mechanical work through the parameter �,

and Q̂ is the energy flow induced by the microscopic
degrees of freedom in the environment. The usual heat is

included in Q̂. Our formalism has practical utilities for
experimental and numerical data analysis of the heat. We

refer to Q̂ as ‘‘heat’’ for convenience. By using the ordi-
nary chain rule for the � integral, we confirm the first law of
thermodynamics

dÊ ¼ p̂ � dp̂
m

þ @U

@x
� dx̂þ @U

@�
d� ¼ dQ̂þ dŴ; (10)

where Ê � p̂2=2mþUð�; x̂Þ is the internal energy of the
particle.

We next derive a representation of the average heat flux
by using the � calculus. For this purpose, we first write

down the Kramers equation for Pðx; p; tÞ ¼ hP̂ ðx; p; tÞi
with P̂ ðx; p; tÞ ¼ �ðx� x̂ðtÞÞ�ðp� p̂ðtÞÞ. The stochastic
Liouville equation [40] is given by

@

@t
P̂ ðx;p;tÞþ @

@x
f _̂xðtÞ�P̂ ðx;p;tÞgþ @

@p
f _̂pðtÞ�P̂ ðx;p;tÞg¼0;

where the stochastic partial differential equation is re-
garded as the � calculus. Taking an average of this equation
and using the transformation formula Eq. (6), we obtain the
generalized Kramers equation

@

@t
P¼� @

@x

�
p

m
P

�
� @

@p

��
��p

m
�@U

@x

�
Pþh�̂�gP̂ i

�
;

(11)

where h�̂ � gP̂ i describes the diffusion of the particle.
Transforming this diffusion term into the Itô type, we
reproduce the ordinary Kramers equation. By introducing

Jx � p

m
P; Jp �

�
��p

m
� @U

@x

�
Pþ h�̂ � gP̂ i; (12)

we rewrite Eq. (11) as the conservation of the probability
@P=@tþ @Jx=@xþ @Jp=@p ¼ 0. Note that the probability

fluxes include an infinite number of differentiations if we
use the Itô calculus. The probability conservation formula
leads to a simple identity of the total derivative for any
function fðx; p; �Þ:
�
d

dt
fðx̂; p̂;�Þ

	
¼
Z
dxdp

�
@f

@x
Jxþ@f

@p
Jp

�
þ _�

�
@f

@�

	
: (13)

Taking fðx; p; �Þ as Eðx; p; �Þ, we derive that the heat
satisfies the formula of the average of heat flux

�
dQ̂

dt

	
¼

Z
dxdp

�
@E

@x
Jx þ @E

@p
Jp

�
: (14)

We note that we can straightforwardly apply the � calculus
to the overdamped Langevin equation.
Heat measurement formula.—In the case of the under-

damped Langevin equation driven by an additive non-
Gaussian noise, the transformation formula Eq. (6) can
be reduced to

dQ̂ ¼ ��p̂2

m2
dtþ dL̂ � p̂

m

¼ ��p̂2

m2
dtþ dL̂ � p̂

m
þ ðdL̂Þ2

2
:

(15)

This formula can be applied to the measurements of the
heat in experiments because Eq. (6) includes the noise term

only up to the second order. The term ðdL̂Þ2 is not deter-
ministic but stochastic, contrary to the cases of the

Gaussian noise, in which ðdL̂Þ2 can be replaced by �2dt
with the variance �. We note that the formula for the heat
measurement becomes more complicated for multiplica-
tive noises. We also note that the heat measurement for-
mula for the overdamped Langevin equation is not simple
even for additive noises, where higher order cumulants
appear for the cases of a nonharmonic potential [33].
A model of ATP reception.—To demonstrate how a non-

Gaussian feature appears in a stochastic process, let us
analyze a Brownian particle in an ATP bath. When the
particle receives an ATP, the particle suddenly moves. We
assume that the particle obeys the overdamped Langevin
equation under a nonharmonic potentialUðxÞ ¼ ðk=2Þx2 þ
ð�=4Þx4 with small �. The system is driven by an additive
Poisson noise whose transition rate Pðx ! yÞ is given by
Pðx ! yÞ ¼ �=2 (if x� y ¼ 	I=�), 0 (otherwise),
where I is the intensity of the Poisson noise and � is a
friction constant. We note that the detailed balance condi-
tion is violated in this model. The dimensionless Langevin
equation of this system is given by

dX̂

d	
¼ �X̂� ~�X̂3 þ �̂; dL̂ ¼ �̂d	; (16)
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hdL̂ni ¼
�
0 ðn oddÞ
ðtp=tsÞn=2�1d	 ðn evenÞ ; (17)

where we introduced the characteristic constants and

dimensionless parameters as ts ¼ �=k, tp ¼ 1=�, xs ¼
ðI=�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðts=tpÞ

q
, ~� ¼ x2s�=k, x̂ ¼ xsX̂, and t ¼ ts	. Note

that ts and tp are the characteristic time scales of the

relaxation of the system and the Poisson noise, respec-
tively, and therefore tp=ts characterizes non-Gaussian

effects. By analyzing this model, we demonstrate that the
� integral is consistent with the first law of thermodynamics
and that the non-Gaussian effects are relevant for tp 
 ts.

We first demonstrate that the first law of thermodynam-
ics is consistent with the � calculus in this system. Let us

define the three types of dimensionless energies ~U � X̂2

2 þ
�X̂4

4 , ~U� � R
	
0 dX̂ðsÞ � @ ~U

@x ,
~US � R

	
0 dX̂ðsÞ � @ ~U

@x , where
~U is

the total potential energy, ~U� is the heat with the � calculus,
and ~US is that with the Stratonovich calculus. We note that
the work is zero in this case. Figure 3 shows the time
evolution of the three quantities without taking the en-
semble average, where ~U� is consistent with the first law
of thermodynamics, while ~US is not.

We next derive the condition where non-Gaussian ef-
fects are relevant. The average of the energy in the steady
state can be obtained for small � as lim	!1h ~Ui ¼ 1=4�
3~�=16� ð~�=16Þðtp=tsÞ. This implies that we cannot ignore

the non-Gaussian effect for tp � ts, while the non-

Gaussian effect vanishes for ts � tp. In fact, tp is the

relaxation time in which the Poisson noise converges to a
Gaussian noise according to the central limit theorem. For
tp � ts, the system evolves before the relaxation, and

therefore we cannot replace the Poisson noise by a
Gaussian noise. In contrast, we can adiabatically eliminate
the non-Gaussian effect in the Poisson process for ts � tp.

Conclusion.—In this Letter, we have developed the sto-
chastic energetics of small thermodynamic systems driven
by a non-Gaussian noise by introducing the new stochastic
integral Eq. (4), which we refer to as the � integral. The
investigation of the second law of thermodynamics and
fluctuation theorem for non-Gaussian processes is a future
issue, in which the � calculus would play an important role.
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