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In this Letter we study the nonlocal properties of permutation symmetric states of n qubits. We show

that all these states are nonlocal, via an extended version of the Hardy paradox and associated inequalities.

Natural extensions of both the paradoxes and the inequalities are developed which relate different

entanglement classes to different nonlocal features. Belonging to a given entanglement class will

guarantee the violation of associated Bell inequalities which see the persistence of correlations to subsets

of players, whereas there are states outside that class which do not violate.
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Introduction.—Nonlocality is a foundational feature of
quantum mechanics and is increasingly becoming recog-
nized as a key resource for quantum information theory, for
example, in device independence [1–4], communication
complexity [5], and measurement based quantum compu-
tation [6,7]. Related, though not equivalent is the feature of
entanglement. In the multipartite setting entanglement is
very complicated, different classes of entanglement exist,
each having potentially different roles as resources. Very
little is currently known if, and how, the richness of multi-
partite entanglement is reflected in nonlocal features, with
some very recent breakthroughs [8].

We explore the nonlocal features of permutation sym-
metric states of qubits. This set of states are useful in a
variety of quantum information tasks, they occur naturally
as ground states in some Bose-Hubbard models, and are
among the most developed experimentally. Relatively little
is known about the nonlocality of permutation symmetric
states, mostly restricted to W and GHZ states [9–11].

Knowing more about their nonlocality would help
understand more their potential as resources for quantum
information processing, and understand better the relation-
ship between the subtleties of multipartite entangled states
and nonlocal features. Recently we begin to get a better
understanding of the entanglement features of symmetric
states using the Majorana representation [12–17]. Here we
use the same tool to study the states’ nonlocality, allowing
us to compare it to entanglement easily.

Consider n parties, indexed by i, each of which make a
measurement in a chosen setting Mi, and get result ri. We
will consider a choice of two settings, each with two out-
comes. A probability distribution over the measurements is
local or admits a local hidden variable (LHV) description
if the joint probability distribution can be written as the
product of individual probabilities given the value of some
hidden variable �:

Pðr1; . . . ; rnjM1; . . . ;MnÞ ¼
Z

�ð�ÞY
i

PðrijMi; �Þd�;

(1)

where PðrijMi; �Þ is the probability for the ith party to
obtain the result ri when using the measurement settingMi

while having � as the value of the hidden variable. �ð�Þ is
the probability distribution of �. Pðr1; . . . ; rnjM1; . . . ;MnÞ
is the joint probability distribution when all n parties
measure using the settings M1; . . . ;Mn and obtain the
results r1; . . . ; rn. Often we will ignore the lower index
when position is obvious. It is obvious that local measure-
ment on any separable state admits an LHV description.
However, nonlocality does not follow directly from entan-
glement [18].
The Hardy paradox has been proposed as an ‘‘almost

probability-free’’ test of the nonlocality of almost all bi-
partite entangled quantum states [19,20]. We first show that
all permutation symmetric states of n qubits can violate an
extended version of the Hardy paradox and associated
inequalities. While there exists earlier work generalizing
the Hardy paradox to an n party [21] equivalent to ours, we
give a constructive way of finding measurements needed
by the n-party paradox to show that all permutation sym-
metric states are nonlocal.
The Hardy paradox and inequality for all permutation

symmetric states.—The original Hardy paradox consists of
four probabilistic conditions that we impose on the out-
comes of an experiment involving two parties [19,20].
These conditions are individually compatible with the
definition of a hidden variable theory given in (1). But
when taken together, they lead to a logical contradiction.
Hardy showed that for almost all bipartite entangled states,
there exist measurement settings to satisfy all these con-
ditions, thus showing the incompatibility of LHV theory
and quantum mechanics. The only exception is the maxi-
mally entangled states. Fortunately, the nonlocality of the
maximally entangled states was proven before [22,23].
A multiparty extension of the Hardy paradox can be

constructed as follows. First suppose there are n players
involved in an experiment. Each player can choose to
measure one of two possible measurement settings labeled
0 or 1, and get one of two possible outcomes, also labeled 0
or 1. The first probabilistic condition we impose is that if
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everyone measures in the 0 basis, then sometimes everyone
gets the result 0:

Pð00 . . . 00j00 . . . 00Þ> 0: (2)

The next n conditions are the same as above for n� 1
players, but now if one player measures in the setting 1
instead of the setting 0 they will never get the result 0.

Pð00 . . . 00j�ð00 . . . 01ÞÞ ¼ 0; (3)

for all permutations � of bit strings with one 1 and n� 1
zeros. Let us consider the implications imposed if these
arise from an LHV model. We see that (1) and (2) imply
that there exists at least one value of � such that
8 i; Pð0ij0i�Þ> 0. Then, for this particular value of �,
we know from (3) that 8 i; Pð0ij1i�Þ ¼ 0. Since there
are only two possible outcomes for each measurement
setting, (3) imply that for this value of �, should everyone
instead chose to measure in setting 1, they must all get
result 1 with certainty.

The last condition we impose contradicts the conclusion
we get above. If everyone measures in setting 1, then they
will never all get the result 1:

Pð11 . . . 1j11 . . . 11Þ ¼ 0: (4)

Clearly (2)–(4) are not possible within LHV. Note that
in the case where n ¼ 2, we recover the original Hardy
paradox [19,20].

However, we will now give a constructive procedure to
find the bases 0 and 1 for almost all permutation symmetric
states such that the conditions (2) to (4) are all satisfied. As
a prerequisite, let us recall some basic properties of per-
mutation symmetric states and the Majorana representa-
tion. More details can be found in the Supplemental
Material [24] and in [12,16,17,25,26].

A permutation symmetric state of n qubits can bewritten

in the form jc i ¼ P
n
k¼0 ckjSðn; kÞi, where jSðn; kÞi ¼

n
k

� ��1=2P
permj0 . . . 0|ffl{zffl}

n�k

1 . . . 1|ffl{zffl}
k

i are Dicke states.

In the Majorana representation, the state jc i is written
as a sum of permutations of the tensor product of n qubits
fj�1i . . . j�nig, called the Majorana points (MPs) of the
state jc i:

jc i ¼ K
X
perm

j�1 . . .�ni: (5)

K is a normalization constant which depends on the over-
lap between different MPs. In the Majorana representation,
local unitaries of the form U�n simply rotate all Majorana
points at the same time, thus equivalent to a rotation of the
Bloch sphere.

Permutation symmetry also persists to subspaces. If jc i
is a permutation symmetric state of n qubits, then for any
single qubit state j�i (ignoring normalization), the (n� 1)-
qubit state h�jc i is also permutation symmetric:

h�jc i ¼ Xn
i¼1

Ci

X
perm

j�1 . . .�n|fflfflfflffl{zfflfflfflffl}
f1;...;ngni

i; (6)

whereCi ¼ h�j�ii and f1; . . . ; ng n imeans that we discard
the MP j�ii.
The equation below holds if and only if j�ii is an MP of

jc i, and j�?
i i is its antipodal point on the Bloch sphere:

ðh�?
i jÞ�njc i ¼ 0: (7)

Wewill now see how to choose the measurement bases that
satisfy (2)–(4) for almost all permutation symmetric states.
First of all, (7) can be seen as the probability amplitude that
gives (4) if we restrict the measurement to be projective
and take the fj�ii;j�?

i ig basis as measurement setting 1 for
all parties.
For condition (3), if one can be satisfied, then by sym-

metry of the state the rest are satisfied automatically.
Consider the projection of the state jc i on one of its
MPs j�ii. By (6) this gives us a new permutation symmet-
ric state of (n� 1) qubits:

jc 0i ¼ h�ijc i ¼ Xn
j¼1

Cj

X
perm

j�1 . . .�n|fflfflfflffl{zfflfflfflffl}
f1;...;ngnj

i; (8)

with Cj ¼ h�ij�ji. The state jc 0i has (n� 1) MPs, possi-

bly different from the MPs of jc i. In fact, the proposition
below shows that for all permutation symmetric states
except Dicke states, there is always at least one MP of
jc 0i that is different from all the MPs of jc i.
Proposition 1.—Let Sc :¼ fj�1i; j�2i; . . . ; j�nig be the

set of MPs of the state jc i. Let Sc i
:¼

fj�1i; j�2i; . . . ; j�n�1ig be the set of MPs of the state
jc ii ¼ h�ijc i. Then Sc i

� Sc iffjc i is a Dicke state up
to rotations of the Bloch sphere.
See Supplemental Material [24] for proof.
Let j�ii be an MP of the state jc 0i as defined in (8) that

is different from all the MPs of jc i, then by (7)

ðh�?
i jÞ�n�1jc 0i ¼ h�i�

?
i . . .�?

i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�1

jc i ¼ 0: (9)

By choosing basis fj�ii; j�?
i ig as measurement setting 0,

for all parties, the probability amplitude (9) implies the
satisfaction of condition (3) by symmetry. Because j�ii
is not an MP of jc i, h�?

i . . .�?
i|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n

jc i � 0. Thus (2) is

satisfied automatically also. By Proposition 1, this proce-
dure of choosing measurement settings 0 and 1 works for
all permutation symmetric states except Dicke states.
The paradox itself, however, cannot be tested directly by

experiments because in real experiments, when taking real-
world noise and inaccuracy into account, we will never see
probabilities getting exactly zero. To make the paradox
more noise tolerant, we make it into an inequality. The
LHV upper bound of the inequality can be violated by the
amount of (2) when we use the procedure given above to
perform a quantum experiment.
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Proposition 2.—The Bell operator for n systems

P n :¼ Pð0 . . . 0j00 . . . 00Þ �X
�

Pð00 . . . 00j�ð00 . . . 01ÞÞ

� Pð1 . . . 1j11 . . . 11Þ
is bounded under LHV as P n � 0.

See Supplemental Material [24] for proof. (See also [21]
for an alternative proof.)

Although the procedure we used to find measurement
settings does not work for Dicke states, the inequality
above can be violated by Dicke states in a 2 settings–2
outcomes experiment.

Proposition 3.—There exists an angle 0< �< � such
that all Dicke states jSðn; kÞi (fk; ng 2 N; 1< k< n)
violate the inequality in Proposition 2 when using the
measurement setting fjþi; j�ig as setting 0 and fcos�2 j0i �
sin�2 j1i; sin�2 j0i þ cos�2 j1ig as setting 1.

See Supplemental Material [24] for proof.
Entanglement classes and nonlocality.—In the Majorana

representation of a permutation symmetric state (5), the
Majorana points fj�1i; . . . ; j�nig are not necessarily all
distinct. In this section we will slightly alter our notation
to incorporate the notion of multiplicity or degeneracy,
which means several MPs are ‘‘sitting on top of one
another.’’ In the new notation, we use di to denote the
degeneracy of the MP j�ii. So (5) becomes

jc i ¼ K
X
perm

j�d1
1 �d2

2 . . .�dl
l i; 8 i � j;

j�ii � j�ji;
Xl
i¼1

di ¼ n:

(10)

Also, (7) becomes

ðh�?
i jÞ�kjc i ¼ 0; (11)

where ðn� diÞ< k � n. Degeneracy of points cannot
change under local operations and classical communica-
tion, even stochastically (SLOCC) [13] (see also [14,15]).
Thus different degeneracies of points, corresponds to dif-
ferent entanglement classes.

Taking degeneracy into account, we can extend the
paradox by considering subsets of players. Translating
(11) to statements of probabilities, we see that the corre-
lations of (4) persist to fewer players

Pð11 . . . 1|fflfflffl{zfflfflffl}
k

j11 . . . 1|fflfflffl{zfflfflffl}
k

Þ ¼ 0; (12)

for ðn� diÞ< k � n. The inequality in Proposition 2 can
be extended naturally to

Qn
d
:¼ P n � Pð11 . . . 1|fflfflffl{zfflfflffl}

n�1

j11 . . . 1|fflfflffl{zfflfflffl}
n�1

Þ � . . .

� Pð11 . . . 1|fflfflffl{zfflfflffl}
n�dþ1

j11 . . . 1|fflfflffl{zfflfflffl}
n�dþ1

Þ � 0: (13)

The LHV upper bound holds because P n is negative by
Proposition 2, and we are only subtracting positive proba-
bilities from it.
We can now see how this inequality allows us to differ-

entiate different entanglement classes via degeneracy
classes. First, it is clear that all states with at least one
MP with degeneracy d will be able to violate inequality
(13). Second, this is not true for all states with lower
degeneracy. Note that we cannot hope that all states with
maximum degeneracy less than d do not violate Qn

d, or

indeed any inequality violated by all states with degener-
acy d, since we can lower the degeneracy by moving one
MP away by an arbitrary distance. In this sense the best that
we could hope for is that certain states, or classes of states
outside the associated entanglement class cannot violate. It
can be checked by using semidefinite programming tech-
niques similar to the ones used in [8] that the tetrahedron
state, shown in Fig. 1(a) does not violateQ4

3 while the state

in Fig. 1(b) does. A similar separation between W states
and Schmidt states (states such that removal of one system
destroys the entanglement) has been found recently in [8].
Furthermore, if all parties measure projectively in the

same basis, the only way they can satisfy conditions
(3)–(5) as well as (12) is if they have at least one MP with
degeneracy d � di. This is because (5) implies the basis is
an MP, and (12) bounds the degeneracy of it. In this sense
one can witness different entanglement classes. One may
further expect that with the same measurement restrictions
high violation of the inequalities depends on the degener-
acies. In this way these extensions probe the different en-
tanglement types given be differing degenerecies [13,27].
Conclusions.—In this Letter we have presented new

Hardy type paradoxes and associated Bell inequalities,
and given a procedure to find bases to show violation for
all permutation symmetric states of qubits, which can be
understood as the generalization of Gisin’s theorem [28] to
permutation symmetric states. One property of the inequal-
ities which is obvious immediately is that the inequalities
are written in terms of probabilities and cannot be extended
to normal correlation operators alone. Since the number of

FIG. 1 (color online). The state (a) jTi ¼ ffiffiffiffiffiffiffiffi
1=3

p j0000i þffiffiffiffiffiffiffiffi
2=3

p jSð4; 3Þi does not violate Q4
3 while all states with degeneracy

d ¼ 3 do, such as the state (b) jD3i ¼ K
P

permj000þi.
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settings and outcomes is two, and since it also works for all
extended GHZ states, it provides an example of a Bell
operator which is more powerful than possible by correla-
tion operators alone [29].

The structure of nonlocal features is also explored via
these methods. Natural extensions of both the paradox and
the inequalities are presented which relate to different
entanglement classes (specifically, degeneracy classes
[13]). On the one hand this provides a witness to discrimi-
nate different entanglement classes if measurements are set
as outlined. On the other hand, states of minimum degen-
eracy can certainly violate associated inequalities, whereas
other states will not, for example, the state jTi as shown
here, no matter what measurements are made, hence pro-
viding a possibility for device independent testing of state
class, as was done in [8] for W and Schmidt state classes.
Thus high degeneracy of MPs, originally considered in
terms of the abstract definition of SLOCC classification,
has a practical application demonstrating the persistence of
nonlocal correlations to fewer systems. In this sense, the
difference noted betweenW and GHZ states in [10] are just
examples of this more general feature.

As nonlocal features become more and more recognized
as important for applications in quantum information we
can expect that these results will lead to better understand-
ing of the usefulness of permutation symmetric states. We
also note that preparation of these states, and indeed the
projective measurements presented is well within experi-
mental grasp in several different possible experimental
frameworks [30–32].
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[29] M. Żukowski, Č. Brukner, W. Laskowski, and M.

Wieśniak, Phys. Rev. Lett. 88, 210402 (2002).
[30] R. Prevedel, G. Cronenberg, M. S. Tame, M. Paternostro,

P. Walther, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett.
103, 020503 (2009).

[31] W. Wieczorek, R. Krischek, N. Kiesel, P. Michelberger, G.
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