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Uncertainty relations provide constraints on how well the outcomes of incompatible measurements can

be predicted, and as well as being fundamental to our understanding of quantum theory, they have

practical applications such as for cryptography and witnessing entanglement. Here we shed new light on

the entropic form of these relations, showing that they follow from a few simple properties, including the

data-processing inequality. We prove these relations without relying on the exact expression for the

entropy, and hence show that a single technique applies to several entropic quantities, including the von

Neumann entropy, min- and max-entropies, and the Rényi entropies.
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Uncertainty relations form a central part of our under-
standing of quantum mechanics and give a dramatic illus-
tration of the separation between quantum and classical
physics. They provide fundamental constraints on how
well the outcomes of various incompatible measurements
can be predicted, as first noted by Heisenberg in the case of
position and momentum measurements [1]. This and other
early uncertainty relations [2,3] were formulated using the
standard deviation as the measure of uncertainty.

With the advent of information theory, it became natural
to develop relations using entropies to measure uncertainty
[4–8]. Furthermore, the most recent versions also account
for the possibility of observers holding additional side
information that they can use to predict the measurement
outcomes [9–11], and the measurements can be arbitrary
positive-operator-valued measures (POVMs) [12,13],
which can be thought of as projective measurements on a
possibly enlarged space (see, e.g., [14]). When formulated
in this way, uncertainty relations can be applied more
directly to problems related to information processing
tasks (data compression, transmission over noisy
channels, etc.) or to cryptography, since the quantities
involved (conditional entropies) have direct operational
meanings.

Applications of the uncertainty principle go right back to
the first work on quantum cryptography [15], which dis-
cussed a proposal for quantum money, amongst other
things. However, because they did not account for the
possibility of quantum side information, the uncertainty
relations available at the time could not be directly applied
to prove security against arbitrary adversaries and served
only an intuitional purpose. Following the discovery of
uncertainty relations that account for the possibility of
quantum side information, there have been many direct
applications. They have been used, for example, as experi-
mentally efficient entanglement witnesses [11,16,17] to
provide tight finite-key rates in quantum key distribution

[18] and to prove security of certain position-based quan-
tum cryptography protocols [19,20].
One way to think about uncertainty relations is in the

following tripartite scenario. Consider a system, A, that
will be measured using one of two measurements, X and Z,
which can be described in terms of their POVM elements,
fXjg and fZkg (in this work, we take these sets to be finite).

If X is measured, an observer (Bob) holding information B
is asked to predict the outcome of this measurement, while
if Z is measured, a second observer (Charlie) holding C is
asked to predict the outcome. In general, the information B
and C, held by the observers, may be quantum, and, most
generally, the state before measurement is described by a
tripartite density operator, �ABC. Uncertainty relations pro-
vide quantitative limits on the prediction accuracy, often
giving a trade-off between Bob’s ability to predict X and
Charlie’s ability to predict Z.
There are many different ways to measure uncertainty,

and for much of this Letter, we need not specify precisely
whichmeasurewe are using.We useHK to denote a generic
measure of uncertainty, which we call a K-entropy.
HKðXjBÞ is then a measure of the uncertainty about the
outcome ofmeasurementX givenB and, likewise,HK̂ðZjCÞ
is a measure of the uncertainty about the outcome of mea-
surementZ givenC, where for our uncertainty relations, we
require the unspecified entropies,HK andHK̂, to be closely
related as explained later. A tripartite uncertainty relation
then gives a lower bound on HKðXjBÞ þHK̂ðZjCÞ, which
depends on the measurements X and Z and reflects their
complementarity. For example, in the case where X and Z
are composed of commuting projectors, so that there exist
states for which both predictions can be correctlymade, this
lower bound will be trivial (i.e., 0).
In this work, we show that such uncertainty relations

follow from a few simple entropic properties. Among them,
the data-processing inequality forms a central part.
Roughly speaking, this states that if B provides information
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about A, then processing B cannot decrease the uncertainty
about A, which is clearly what one would expect from an
uncertainty measure.

We also obtain relations for the bipartite case where only
one measurement will be made (i.e., where we only ask
Bob to predict the outcome of the measurement of X).
The state-independent relation we obtain is trivial if X
is projective (then there is always a state for which
HKðXjBÞ ¼ 0) but gives an interesting bound for more
general measurements. Furthermore, we give an additional
relation that depends on the entropy of the initial state.

More precisely, our main result is that for any entropy
HK that satisfies a particular set of properties (stated
below), the relations

HKðXjBÞ þHK̂ðZjCÞ � log
1

cðX; ZÞ ; (1)

HKðXjBÞ � log
1

cðXÞ ; (2)

and

HKðXjBÞ � log
1

c0ðXÞ þHKðAjBÞ (3)

hold for any state �ABC, where cðX; ZÞ ¼
maxjkk ffiffiffiffiffiffi

Xj

p ffiffiffiffiffiffi
Zk

p k21, cðXÞ ¼ cðX; f1gÞ and c0ðXÞ ¼
maxjTrðXjÞ (the infinity norm of an operator is its largest

singular value) [21]. In (3), HKðAjBÞ is the conditional
K-entropy of A given B, and in (1), HK̂ is the entropy
dual to HK in the sense that for any pure state �ABC,
HKðAjBÞ þHK̂ðAjCÞ ¼ 0.

In particular, our proof applies to the von Neumann
entropy, the min- and max-entropies, and a range of
Rényi entropies. For the tripartite relation, the first two
cases were already known [11–13], while the latter is new,
and for the bipartite relations we extend previous work on
this idea [13,22,23] to allow for other entropies or quantum
side information. To emphasize, the main contribution of
the present work is that it provides a unified proof of these
relations.

Entropic properties.—As mentioned above, we are in-
terested in the uncertainties of POVM outcomes. A POVM,
X, can be specified via a set of operators fXjg that satisfy
Xj � 0,

P
jXj ¼ 1. We also define an associated trace-

preserving completely positive map (TPCPM), X, from
H A to H X given by

X : �A �
X
j

jjihjjXTrðXj�AÞ; (4)

where fjjig form an orthonormal basis in H X. Thus, for a
state �AB, we can define the conditional K-entropy of X
given B, denotedHKðXjBÞ, as the conditionalK-entropy of
the state ðX � IÞð�ABÞ.

A (bipartite) conditional entropy is a map from the set of
density operators on a Hilbert space H AB to the real

numbers. In turns out to be convenient to consider a
generalized quantity, DKðS k TÞ, which maps two positive
semidefinite operators to the real numbers. Such quantities
are often called relative entropies. We consider relative
K-entropies that are constructed such that they generalize
the respective conditional K-entropies in the sense that,
depending on the entropy, either HKðAjBÞ ¼ �DKð�AB k
1 � �BÞ or HKðAjBÞ¼max�B

½�DKð�AB k1��BÞ�, where
�B is any (normalized) density operator on H B.
We now introduce the properties of DK that allow us to

prove our uncertainty relations: (a) Decrease under
TPCPMs: If E is a TPCPM, then DKðEðSÞ k EðTÞÞ �
DKðS k TÞ. (b) Being unaffected by null subspaces:
DKðS � 0 k T � T0Þ ¼ DKðS k TÞ, where � denotes direct
sum. (c) Multiplying the second argument: If c is a positive
constant, then DKðS k cTÞ ¼ DKðS k TÞ þ log1c . (d) Zero

for identical states: For anydensity operator�,DKð�k�Þ¼0.
Property (a) implies the increase of HKðAjBÞ under

TPCPMs on B, i.e., the data-processing inequality—doing
operations on B cannot decrease the uncertainty about A. It
also implies that DK is invariant under isometries U, i.e.,

DKðUSUy k UTUyÞ ¼ DKðS k TÞ: (5)

This can be seen by invoking (a) twice in succession, first
with the TPCPM corresponding to U, then with a TPCPM
that undoesU, establishing thatDKðS k TÞ � DKðUSUy k
UTUyÞ � DKðS k TÞ, and hence (5).
The uncertainty relation (1) is expressed in terms of the

entropy HK and its dual HK̂, the latter being defined by
HK̂ðAjBÞ :¼ �HKðAjCÞ, where �ABC is a purification of
�AB. That this is independent of the chosen purification
(and hence that HK̂ is well defined) is ensured by the
invariance of HKðAjBÞ under local isometries (shown in
the Supplemental Material [24]), and the fact that purifi-
cations are unique up to isometries on the purifying system
(see, for example, [14]). This definition also ensures that
HK̂ðAjBÞ inherits many natural properties of HKðAjBÞ, for
example, increase under TPCPMs on B and invariance
under local isometries.
We proceed by giving some examples of entropies that

fit these criteria. The first is the von Neumann entropy,
which can be defined via the von Neumann relative
entropy. For two positive operators, S and T, this is
given by

DðS k TÞ :¼ lim
�!0

1

Tr S
fTrðS logSÞ � Tr½S logðT þ �1Þ�g:

Note that if T is invertible, the limit is not needed, and if
part of S lies outside the support of T then DðSjjTÞ ¼ 1.
For a density operator �AB, we can then define the condi-
tional von Neumann entropy of A given B by HðAjBÞ :¼
�Dð�ABjj1 � �BÞ. The von Neumann entropy is its
own dual; i.e., for any pure state �ABC, we haveHðAjBÞ ¼
�HðAjCÞ.
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A second class of entropies to which our results apply
are a range of Rényi entropies [25,26] (for examples of
their application, see, e.g., [27]). For positive operators,
S and T, and for � 2 ð0; 1Þ [ ð1; 2�, the Rényi relative
entropy of order � is defined by

D�ðS k TÞ :¼ lim
�!0

1

�� 1
log Tr½S�ðT þ �1Þ1���:

Furthermore, we define

D0ðS k TÞ :¼ lim
�!0þ

D�ðS k TÞ and

D1ðS k TÞ :¼ lim
�!1

D�ðS k TÞ ¼ DðS k TÞ:

Hence, the von Neumann relative entropy can be seen as
the special case � ¼ 1. The relative entropy D� gives rise
to the conditional Rényi entropy

H�ðAjBÞ :¼ �D�ð�AB k 1 � �BÞ;
which satisfies the duality relation that H�ðAjBÞ ¼
�H2��ðAjCÞ for pure �ABC [28].

Furthermore, the min and max relative entropies

DminðS k TÞ :¼ log minf�: S � �Tg

DmaxðS k TÞ :¼ �2 logTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

p
T

ffiffiffi
S

pq

can be used to define the related conditional entropies
[29,30]

HminðAjBÞ :¼ max
�B

½�Dminð�AB k 1 � �BÞ�
HmaxðAjBÞ :¼ max

�B

½�Dmaxð�AB k 1 � �BÞ�;

which satisfy the duality relation HminðAjBÞ ¼
�HmaxðAjCÞ [30]. We also consider the entropies

Ĥ�ðAjBÞ :¼ max
�B

½�D�ð�AB k 1 � �BÞ�:

While in general we do not have alternative expressions
for the duals of the latter entropies, it has been shown [31]

that ĤminðAjBÞ ¼ �Ĥ0ðAjCÞ for pure �ABC, where

ĤminðAjBÞ :¼ �Dminð�ABjj1 � �BÞ.
Main results.—Our main result is that the properties

discussed above are sufficient to establish the following
uncertainty relations [24].

Theorem 1.—Let X ¼ fXjg and Z ¼ fZkg be arbitrary

POVMs on A, andHKðAjBÞ be such that eitherHKðAjBÞ ¼
�DKð�AB k 1 � �BÞ or HKðAjBÞ ¼ max�B

½�DKð�AB k
1 � �BÞ�, for all �AB, where DK satisfies properties (a)–
(c). It follows that for all �ABC

HKðXjBÞ þHK̂ðZjCÞ � log
1

cðX; ZÞ ;

where cðX; ZÞ ¼ maxj;kk
ffiffiffiffiffiffi
Zk

p ffiffiffiffiffiffi
Xj

p k21.
The ideas behind this proof are illustrated below, where

we give a proof for the special case where HK is the von

Neumann entropy, and X and Z are composed of rank-one
projectors.
We also have the following single-measurement uncer-

tainty relation.
Lemma 2.—Let X ¼ fXjg be an arbitrary POVM on A,

and suppose that HK and its related DK satisfy the con-
ditions given in Theorem 1, as well as in property (d).
Then, for all �AB,

HKðXjBÞ � log
1

cðXÞ ; (6)

where cðXÞ :¼ cðX; f1gÞ ¼ maxjkXjk1.
Proof.—This follows from Theorem 1 by setting Z¼f1g

and using the fact that HK̂ðZjCÞ ¼ 0 in this case (see
Lemma S4 in the Supplemental Material [24]). j
However, there is an alternative single-measurement

relation, which can give a stronger bound than (6).
Lemma 3.—Let X ¼ fXjg be an arbitrary POVM on A,

and HKðAjBÞ be such that either HKðAjBÞ ¼ �DKð�AB k
1 � �BÞ or HKðAjBÞ ¼ max�B

½�DKð�AB k 1 � �BÞ�, for
all�AB, whereDK satisfies properties (a)–(c). It follows that

HKðXjBÞ � log
1

c0ðXÞ þHKðAjBÞ;

where c0ðXÞ ¼ maxjTrðXjÞ.
We remark that the bounds in these results can be

generalized in the following way. Suppose� is a projector
on H A whose support includes the support of �A.
The above results hold if cðX; ZÞ is replaced by

cðX; Z;�Þ :¼ maxj;kk
ffiffiffiffiffiffi
Zk

p
�

ffiffiffiffiffiffi
Xj

p k21 and if c0ðXÞ is re-

placed by c0ðX;�Þ ¼ maxjTrðXj�Þ. See [32] for further

ways to take advantage of knowledge of the state to derive
tighter uncertainty relations for the von Neumann entropy.
Our results imply that, in order to establish that a par-

ticular entropy satisfies these uncertainty relations, it suf-
fices to verify that it satisfies a few properties. (Recall that
for any entropy satisfying our properties, its dual is auto-
matically well defined; it is not necessary to have an
alternative expression for it in order for (1) to hold.).
Lemma 4.—All examples of relative entropies defined

above satisfy properties (a)–(d).
Proof.—Properties (b), (c), and (d) follow directly from

the definitions of these entropies. Property (a) was dis-
cussed in, e.g., [14] for the von Neumann relative entropy,
in [26,28] for the Rényi relative entropies (D0 being a
special case), and in [29] for the min relative entropy.
For the max relative entropy, it follows because the fidelity
is monotonically increasing under TPCPMs [33]. j
This implies that the dual entropy pairs (H, H), (H�,

H2��), (Hmin, Hmax) and (Ĥmin, Ĥ0) each satisfy Eq. (1)

and that the entropies H, H�, Hmin, Hmax, Ĥ� and Ĥmin

each satisfy Eqs. (2) and (3).
Illustration of the proof technique.—In order to illustrate

how our properties combine to yield uncertainty relations,
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we give a proof in the special case of the von Neumann
entropy and where X ¼ fjXjihXjjg and Z ¼ fjZkihZkjg are
orthonormal bases. Although more straightforward, this
proof features all of the essential ideas of its generalization.
We note that in this case cðX; ZÞ ¼ maxj;kjhXjjZkij2, and
the resulting uncertainty relation

HðXjBÞ þHðZjCÞ � log
1

cðX; ZÞ ; (7)

is the one conjectured in [10] and proven in [11].
We first show that all relativeK-entropies are decreasing

under increases of its second argument.
Lemma 5.—If DKðSjjTÞ satisfies properties (a) and (b),

then for all positive operators S and T, and for ~T � T,

DKðS k TÞ � DKðS k ~TÞ: (8)

Proof.—DenoteH � as the Hilbert space on which S, T

and ~T are defined and introduce H � as an isomorphic
Hilbert space. Let fj�jig and fj�jig be orthonormal bases

for H � and H � and let H ¼ H � �H �. We also

introduce a TPCPM acting on operators on H , F : S �
F1SF

y
1 þ F2SF

y
2 , with F1 ¼ P

jj�jih�jj and F2 ¼P
jj�jih�jj. For W :¼ ~T � T, we have

DKðSjjTÞ ¼ðbÞDKðS � 0jjT �WÞ
�ðaÞ DK½F ðS � 0ÞjjF ðT �WÞ�
¼ðbÞDK½S � 0jjðT þWÞ � 0� ¼ DKðSjj ~TÞ: j

Now, define the isometry VX :¼ P
jjji � Xj associated

with the X measurement on system A, and the state

~�XABC :¼ VX�ABCV
y
X . We proceed to give the proof for

the case of pure �ABC. The impure case follows by consid-
ering a purification, �ABCD, and usingHðXjCÞ � HðXjCDÞ
[from property (a)]. Applying the duality to ~�XABC gives

HðXjCÞ ¼ �HðXjABÞ ¼ Dð~�XAB k 1 � ~�ABÞ
¼ðbÞD

�
VX�ABV

y
X k VX

X
j

Xj�ABXjV
y
X

�

¼ð5ÞD
�
�AB k X

j

Xj�ABXj

�

�ðaÞ D
�
��ZB k X

j;k

jhXjjZkij2Zk � TrAfXj�ABg
�

�ð8Þ Dð ��ZB k cðX; ZÞ1 � �BÞ
¼ðcÞ log½1=cðX; ZÞ� þDð ��ZB k 1 � �BÞ
¼ log½1=cðX; ZÞ� �HðZjBÞ; (9)

where we have used ��ZB :¼ P
kZk�ABZk.

We note that our proof technique points to a method for
finding states that satisfy the uncertainty relation (7) with
equality. In the case of pure states �ABC and mutually

unbiased bases X and Z (for which jhXjjZkij is independent
of j, k), the only inequality remaining is a single use of
property (a) [the fourth line of (9)]. In this case, (7) is
satisfied with equality if property (a) is saturated, for the
particular TPCPM used in the proof.
For the von Neumann relative entropy, (a) is satisfied

with equality [34,35] if, and only if, there exists a TPCPM,

Ê, that undoes the action of E on S and T, i.e.,

ðÊ � EÞðSÞ ¼ S; ðÊ � EÞðTÞ ¼ T: (10)

Hence, states of minimum uncertainty are closely con-
nected to the reversibility of certain quantum operations.
For specific examples, we refer the reader to [36].
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arXiv:0912.4495.

[32] E. Hänggi and M. Tomamichel, arXiv:1108.5349.
[33] H. Barnum, C.M. Caves, C. A. Fuchs, R. Jozsa, and B.

Schumacher, Phys. Rev. Lett. 76, 2818 (1996).
[34] D. Petz, Rev. Math. Phys. 15, 79 (2003).
[35] P. Hayden, R. Jozsa, D. Petz, and A. Winter, Commun.

Math. Phys. 246, 359 (2004).
[36] P. J. Coles, L. Yu, and M. Zwolak, arXiv:1105.4865.

PRL 108, 210405 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
25 MAY 2012

210405-5

http://arXiv.org/abs/0807.2691
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.210405
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.210405
http://dx.doi.org/10.1016/0034-4877(86)90067-4
http://dx.doi.org/10.1109/TIT.2011.2110050
http://dx.doi.org/10.1109/TIT.2011.2110050
http://dx.doi.org/10.1109/TIT.2009.2032797
http://dx.doi.org/10.1109/TIT.2009.2032797
http://arXiv.org/abs/quant-ph/0512258
http://arXiv.org/abs/quant-ph/0512258
http://dx.doi.org/10.1109/TIT.2009.2025545
http://dx.doi.org/10.1109/TIT.2009.2025545
http://arXiv.org/abs/0912.4495
http://arXiv.org/abs/1108.5349
http://dx.doi.org/10.1103/PhysRevLett.76.2818
http://dx.doi.org/10.1142/S0129055X03001576
http://dx.doi.org/10.1007/s00220-004-1049-z
http://dx.doi.org/10.1007/s00220-004-1049-z
http://arXiv.org/abs/1105.4865

