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We explore the possibility to generate nonlocal dynamical maps of an open quantum system through

local system-environment interactions. Employing a generic decoherence process induced by a local

interaction Hamiltonian, we show that initial correlations in a composite environment can lead to nonlocal

open system dynamics which exhibit strong memory effects, although the local dynamics is Markovian. In

a model of two entangled photons interacting with two dephasing environments, we find a direct

connection between the degree of memory effects and the amount of correlation in the initial environ-

mental state. The results demonstrate that, contrary to conventional wisdom, enlarging an open system can

change the dynamics from Markovian to non-Markovian.
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Coupling a quantum mechanical system to an external
environment causes the system to lose information to its
surroundings. Since nearly all realistic quantum systems
are open, understanding and controlling the dynamics arising
from the presence of the environment is of central impor-
tance in present-day research [1,2]. The standard approach to
the dynamics of open quantum systems employs the concept
of a quantum Markov process that is given by a semigroup
of completely positive dynamical maps and a corresponding
quantum master equation with a generator in Lindblad
form [3,4]. However, many quantum systems exhibit
non-Markovian behavior in which there is a flow of infor-
mation from the environment back to the open system,
signifying the presence of quantummemory effects [5–10].

For many processes occurring in nature, approximations
allowing a simple Markovian description are not applicable.
It is known, for example, that strong system-environment
couplings, structured and finite reservoirs, low temperatures,
and the presence of large initial system-environment corre-
lations can give rise to memory effects in the open system
dynamics. The recognition of the importance of non-
Markovian processes has initiated many essential steps
toward the development of a general consistent theory of
non-Markovian quantum dynamics [11–17] as well as
achievements in the experimental detection and control of
memory effects [18,19].

In this Letter, we introduce a hitherto unexplored source
for quantum memory effects, namely, the presence of
initial correlations between the subsystems of a composite
environment that interact locally with the subsystems of a
composite open system. It is demonstrated that correlations
between the environmental subsystems can generate a
nonlocal quantum process from a perfectly local interac-
tion Hamiltonian. We will show further that a nonlocal
decoherence process can lead to non-Markovian behavior,
although the local dynamics of both subsystems is

Markovian. These features are discussed by employing
two theoretical models, namely, a generic decoherence
model of two qubits interacting with correlated multimode
fields and an experimentally realizable model of entangled
down-converted photons traveling through birefringent
media. We thus find a new, experimentally controllable
source for memory effects in a quantum dynamical pro-
cess. Besides the practical importance of the result in the
physical realization and control of dynamical processes, it
also reveals an unexpected feature about the nature of non-
Markovian dynamics of composite quantum systems:
Enlarging the open system can actually turn the dynamics
from a Markovian to a non-Markovian regime.
We consider an open system S consisting of two sub-

systems labeled by an index i ¼ 1; 2 and an environment E
that is also composed of two subsystems. We assume that
there are only local system-environment interactions, i.e.,
that subsystem i of S interacts only with its environment i
of E. The local interactions are described by unitaries
UiðtÞ, and S and E are supposed to be uncorrelated at the
initial time. The open system state at time t is thus given by

�12
S ðtÞ¼�12ðtÞ½�12

S ð0Þ�
¼ trEf½U1ðtÞ�U2ðtÞ��12

S ð0Þ��12
E ð0Þ½Uy

1 ðtÞ�Uy
2 ðtÞ�g;

where �12ðtÞ represents the quantum dynamical map de-
scribing the time evolution of S. If the two environments
are initially uncorrelated, �12

E ð0Þ ¼ �1
Eð0Þ � �2

Eð0Þ, this
map factorizes, and the dynamics of S is given by a product
of local maps, �12ðtÞ ¼ �1ðtÞ ��2ðtÞ. However, when
�12
E ð0Þ exhibits correlations �12ðtÞ does not in general

factorize and the environmental correlations may give rise
to a nonlocal process even when the interaction Hamiltonian
is purely local. For a local map the dynamical properties of
the subsystems completely determine the global system
dynamics, but when the map is nonlocal the global system
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can exhibit features which are not present in the dynamics of
the individual subsystems. Here we explore especially quan-
tum memory effects arising from a nonlocal dynamics.

We consider a dephasing map for two qubits of the
general form

�12
S ðtÞ¼

jaj2 ab��2ðtÞ ac��1ðtÞ ad��12ðtÞ
ba���

2ðtÞ jbj2 bc��12ðtÞ bd��1ðtÞ
ca���

1ðtÞ cb���
12ðtÞ jcj2 cd��2ðtÞ

da���
12ðtÞ db���

1ðtÞ dc���
2ðtÞ jdj2

0
BBBBB@

1
CCCCCA;

(1)

where the initial state of the two qubit system is a pure state
given by

jc 12i ¼ aj00i þ bj01i þ cj10i þ dj11i: (2)

The corresponding dynamics for subsystems 1 and 2 are
given by �1

SðtÞ ¼ tr2½�12
S ðtÞ� and �2

SðtÞ ¼ tr1½�12
S ðtÞ�. The

states �1
SðtÞ and �2

SðtÞ are fully determined by the functions

�1ðtÞ and �2ðtÞ, depending neither on �12ðtÞ nor on �12ðtÞ.
The interaction Hamiltonian is assumed to be local; i.e., we
have

HintðtÞ ¼ �1ðtÞH1 þ �2ðtÞH2; (3)

where the function �iðtÞ is 1 for tsi � t � tfi and zero

otherwise. Here, tsi and tfi denote the times the interaction
is switched on and switched off in system i, respectively.
Since the local Hamiltonians Hi commute, the time
evolution of the total system is given by j�ðtÞi ¼
exp½�i

R
t
0 dt

0Hintðt0Þ�j�ð0Þi. We will further denote the

local interaction times as tiðtÞ ¼
R
t
0 �iðt0Þdt0, and for con-

venience we will not explicitly write the time dependence
of ti.

Before turning to the details of the physical systems
under study, let us briefly discuss the concept of memory
effects. Memory effects are quantified in Ref. [13] by
employing the trace distance Dð�A; �BÞ ¼ 1

2 trj�A � �Bj
between two quantum states �A and �B. This quantity
can be interpreted as a measure for the distinguishability
of the two states [20–22]. In view of this interpretation, the
characteristic feature of a non-Markovian quantum process
is the increase of the distinguishability, i.e., a reversed flow
of information from the environment back to the open
system. Through this recycling of information the earlier
states of the open system influence its later states [8],
which expresses the emergence of memory effects in the
open system dynamics. The measure for non-Markovianity
is written as

N ð�Þ ¼ max
�A;Bð0Þ

Z
�>0

dt�ðt; �A;Bð0ÞÞ; (4)

where �ðt; �A;Bð0ÞÞ ¼ d
dt Dð�AðtÞ; �BðtÞÞ. Here, the time

integration is extended over all subintervals of time in
which the rate of change of the trace distance � is positive,

and the maximum is taken over all pairs of initial states.
The quantity in Eq. (4) thus measures the maximal total
amount of information which flows from the environment
back to the open system over the whole time evolution.
First, we study a generic model of two qubits interacting

with correlated multimode fields. The local interaction

Hamiltonians of Eq. (3) are Hi¼
P

k�
i
zðgkbiyk þg�kb

i
kÞ. We

assume that the interaction strengths in both systems are
identical, g1k ¼ g2k. The local time evolution of the systems

is then given by the unitary

UiðtÞ ¼ exp

�
�i

z

X
k

½biyk �kðtiÞ � bik�
�
kðtiÞ�

�
; (5)

where �kðtiÞ ¼ gkð1� ei!ktiÞ=!k. The local unitary of
Eq. (5) acts in the following way:

UiðtÞj0i � j�i ¼ j0i �O
k

Dð� �kðtiÞÞj�i;

UiðtÞj1i � j�i ¼ j1i �O
k

Dð�kðtiÞÞj�i;

whereDð�kÞ is the displacement operator for the kth mode.
Let us take as the initial state j�ð0Þi ¼ jc 12i � j�12i,
where jc 12i is given by Eq. (2) and j�12i ¼

N
k j�k

12i.
The decoherence process is then given by Eq. (1), where
�1ðtÞ ¼ h�10

12j�00
12i, �2ðtÞ ¼ h�01

12j�00
12i, �12ðtÞ ¼ h�11

12j�00
12i,

and �12ðtÞ ¼ h�10
12j�01

12i with
j�nm

12 ðtÞi ¼
O
k

½Dðð�1Þnþ1�kðt1ÞÞ

�Dðð�1Þmþ1�kðt2ÞÞ�j�12i:
After some algebra, one finds

�1ðtÞ ¼
Y
k

�kð� 2�kðt1Þ; 0Þ;

�2ðtÞ ¼
Y
k

�kð0;�2�kðt2ÞÞ;

�12ðtÞ ¼
Y
k

�kð� 2�kðt1Þ;�2�kðt2ÞÞ;

�12ðtÞ ¼
Y
k

�kð� 2�kðt1Þ;þ2�kðt2ÞÞ;

where �kðx; yÞ is the characteristic function of j�k
12i.

Let us consider a two-mode Gaussian state with

the characteristic function �kðx; yÞ ¼ �kð�1; �2; �3; �4Þ ¼
expð� 1

2
~�T� ~�Þ, where �1 ¼ <½x�, �2 ¼ =½x�, �3 ¼ <½y�,

�4 ¼ =½y� and

� ¼ A C
CT B

� �

is the covariance matrix of the state. Let us take A ¼ B ¼ I
and C ¼ cI. Now the state is uncorrelated if and only if
c ¼ 0. We can write

�kðx; yÞ ¼ exp½�1
2fjxj2 þ jyj2 þ cðxy� þ x�yÞg�:
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For c ¼ �1, we get �kðx; yÞ ¼ exp½� 1
2 jx� yj2� and

�12ðtÞ ¼ exp½�2
P

kj�kðt1Þ � �kðt2Þj2�. Performing the
continuum limit, we obtain

�12ðtÞ ¼ exp

�
�4

Z 1

0
d!Jð!Þ 1� cos½!jt1ðtÞ � t2ðtÞj�

!2

�
;

where Jð!Þ is the spectral density of the reservoir. For an
Ohmic spectral density Jð!Þ ¼ �! expð�!=!cÞ with
coupling constant � and frequency cutoff !c, we have

�1ðtÞ ¼ ½1þ!2
ct

2
1ðtÞ��2�; �2ðtÞ ¼ ½1þ!2

ct
2
2ðtÞ��2�;

�12ðtÞ ¼ ½1þ!2
cjt1ðtÞ � t2ðtÞj2��2�;

�12ðtÞ ¼ �2
1ðtÞ�2

2ðtÞ=�12ðtÞ:
The maximization over the initial states in Eq. (4) for
different values of c is presented in Fig. 1(a). The trace
distance dynamics of the subsystems 1 and 2 as well as the
global dynamics are presented in Fig. 2. We clearly see that
the trace distance in the subsystems 1 and 2 continuously
decreases, but for the total system the trace distance does
indeed increase: We obtain a dynamics which is locally
Markovian but globally exhibits nonlocal memory effects.

As our second example, we examine an experimentally
realizable model of a pair of entangled photons subjected
to local birefringent environments [23,24]. The photon
pair is created in a spontaneous parametric down-
conversion process after which the photons separate, trav-
eling along different arms i ¼ 1; 2, and move through
different quartz plates. When a photon enters a quartz plate

a local interaction between the polarization degrees of
freedom (forming the open system) and the frequency
degrees of freedom (forming the environment) is switched
on. The Hamiltonian describing the local interaction in
Eq. (3) of a photon induced by the corresponding quartz
plate is given by

Hi ¼ �
Z

d!i!i½nV jVihVj þ nHjHihHj� � j!iih!ij;

where j�i � j!ii denotes the state of a photon in arm iwith
polarization � ¼ H;V (horizontal or vertical) and fre-
quency !i. The refraction index of the polarization state
� is denoted by n�. The total initial state is given
by j�ð0Þi ¼ jc 12i �

R
d!1d!2gð!1; !2Þj!1; !2i, where

jc 12i ¼ ajHHi þ bjHVi þ cjVHi þ djVVi. Initially, the
environment formed by the mode degrees of freedom is
thus in a correlated state, with gð!1; !2Þ denoting the
amplitude of finding a photon with frequency !1 in arm
1 and a photon with frequency !2 in arm 2. The corre-
sponding joint probability distribution will be denoted by
Pð!1; !2Þ ¼ jgð!1; !2Þj2.
The state of the open system (polarization states) at time

t is of the form of Eq. (1) with the functions �1ðtÞ ¼
Gð�nt1; 0Þ, �2ðtÞ ¼ Gð0;�nt2Þ, �12ðtÞ ¼ Gð�nt1;�nt2Þ,
and �12ðtÞ ¼ Gð�nt1;��nt2Þ, where

Gð	1; 	2Þ ¼
Z

d!1d!2Pð!1; !2Þe�ið!1	1þ!2	2Þ

is the Fourier transform of Pð!1; !2Þ and �n ¼ nV � nH
is the birefringence. Note that although the Hamiltonian of
(3) is a sum of local interaction terms, the corresponding
dynamical map �12ðtÞ is a product of local dynamical
maps if and only if �12ðtÞ ¼ �1ðtÞ�2ðtÞ and �12ðtÞ ¼
�1ðtÞ��

2ðtÞ. This is the case only when the joint frequency
distribution Pð!1; !2Þ factorizes, i.e., when the frequen-
cies !1 and !2 are uncorrelated.

(a)

1.0 0.5 0.0 0.5 1.0
0.0
0.2
0.4
0.6
0.8

c

(b)

1.0 0.5 0.0 0.5 1.0
0.0
0.1
0.2
0.3
0.4

K

FIG. 1 (color online). Maximization over the pairs of initial
states. The (blue) dots represent the increase of the trace distance
for 1000 randomly drawn initial pairs of states. (a) Two qubits
interacting with multimode fields. The measure for non-
Markovianity for different values of c and for � ¼ 1. The
(red) triangles represent the measure for the maximizing pair
ð1= ffiffiffi

2
p Þðj00i � j11iÞ, and the (red) squares represent the measure

for the maximizing pair ð1= ffiffiffi
2

p Þðj01i � j10iÞ. (b) Two photons
moving through quartz plates. The measure for non-
Markovianity for different values of the correlation coefficient

K, and a fixed C1=2
11 T�n ¼ 1. The (red) triangles represent the

measure for the maximizing pair ð1= ffiffiffi
2

p ÞðjHHi � jVViÞ, and the
(red) squares represent the measure for the maximizing pair
ð1= ffiffiffi

2
p ÞðjHVi � jVHiÞ.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

ct

D

FIG. 2 (color online). Trace distance dynamics for the two
qubits interacting with correlated multimode fields. We take

� ¼ 1, ts1 ¼ 0, tf1 ¼ 1 ¼ ts2, and tf2 ¼ 2 in units of !�1
c . The

solid (blue) lines represent the trace distance with different
values of c for the global dynamics of the two qubits for the
maximizing pair of initial states. The dashed (red) line and the
dotted (green) line give the trace distance evolution for the initial
states 1=

ffiffiffi
2

p ðj0i � j1iÞ in systems 1 and 2, respectively.
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To characterize the correlations in the initial environ-
mental state we introduce the covariance matrix C ¼ ðCijÞ
with elements Cij ¼ h!i!ji � h!iih!ji. We will assume

that both the means and the variances of !1 and !2 are
equal; i.e., h!1i ¼ h!2i ¼ !0=2 and C11 ¼ C22 ¼ h!2

i i �h!ii2. To quantify the frequency correlations we use the
correlation coefficient K ¼ C12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22

p ¼ C12=C11. We
have jKj � 1, where the equality sign holds; i.e., K ¼ �1,
if and only if !1 and !2 are linearly related.

Let us take a Gaussian frequency distribution

Pð!1; !2Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffi
detC

p e�ð1=2Þð ~!�h ~!iÞTC�1ð ~!�h ~!iÞ; (6)

where ~! ¼ ð!1; !2ÞT and h ~!i ¼ ðh!1i; h!2iÞT . One can
easily find the Fourier transform of this distribution,

Gð	1; 	2Þ ¼ ei!0ð	1þ	2Þ=2�C11ð	21þ	22þ2K	1	2Þ=2: (7)

We assume for simplicity that the total interaction times

for both photons are equal, denoting it by T ¼ tf1 � ts1 ¼
tf2 � ts2, and that the quartz plates are mounted one after

another, i.e., tf1 ¼ ts2. We can then derive an analytic ex-

pression for the measure (4) of the non-Markovianity of the
process. The maximization over the pair of initial states in
Eq. (4) is illustrated in Fig. 1(b). Using Eqs. (1) and (7), we
obtain the time dependence of the trace distance for the
maximizing initial pairs,

DðtÞ ¼ exp

�
��n2

2
C11ðt21 þ t22 � 2jKjt1t2Þ

�
:

During the interaction of the photon in arm 1, the trace
distance first decreases from the initial value 1 to the value

D1 ¼ exp½� �n2

2 C11T
2�. The subsequent interaction of the

photon in arm 2 depends on the function fðt2Þ ¼
t22 � 2jKjTt2 for t2 2 ½0; T�. This function decreases
monotonically in the interval ½0; jKjT� from the value
fð0Þ ¼ 0 to the value fðjKjTÞ ¼ �ðKTÞ2, which means
that the trace distance increases over this interval to the

value D2 ¼ expf� �n2

2 C11½T2 � ðKTÞ2�g. It follows that

the non-Markovianity measure is given by

N ¼D2�D1¼e�ð1=2ÞC11ð�nTÞ2½eð1=2ÞC11ð�nTÞ2K2�1�: (8)

This equation establishes a direct connection between the
measure for non-Markovianity and the degree of correla-
tions in the initial environmental state as quantified by the
correlation coefficient K. We also see that the process is
Markovian if and only if K ¼ 0. The relation Eq. (8) is
further illustrated in Fig. 3, where we have plotted the
frequency distribution Pð!1; !2Þ and the dynamics of the
trace distance for three different values of the correlation
coefficient, K ¼ 0:0;�0:5;�1:0 (anticorrelation). One
clearly observes that when the frequencies !1 and !2

become more anticorrelated the dynamics becomes more
non-Markovian. In general, we conclude that the reduced
dynamics of the two-photon polarization state is non-
Markovian whenever the frequency distribution Pð!1; !2Þ

exhibits correlation. This behavior occurs globally, i.e.,
when we study the dynamics of the composite state of
both photons. However, if one observes the local dynamics
of either of the photons, the process is always Markovian.
Summarizing, we have found a new source for memory

effects in the dynamics of open quantum systems. We
studied a generic dephasing model as well as a theoretical
scheme that is experimentally realizable with current tech-
nology. The initial correlations within the environment
induce a nonlocal map which gives rise to memory effects
in the open system dynamics. Locally, each subsystem
follows Markovian dynamics, but globally they are ex-
posed to memory effects even though the interaction
Hamiltonian is local. Since for classical stochastic pro-
cesses a non-Markovian process can be embedded in a
Markovian one by a suitable enlargement of the number
of relevant variables, the general view has been that enlarg-
ing the open quantum system under study tunes the dy-
namics towards a Markovian behavior. This can be done
for certain non-Markovian quantum processes as well
[25–28], but we see that also the exactly opposite behavior
can occur; i.e., enlarging the subsystem can bring the
dynamics from a Markovian to a non-Markovian regime.
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