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The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have

been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for

critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks

are critical. We analyze neuronal network data collected at the individual neuron level using the

framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that

the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a

single universal scaling function. We also show that the data have three additional features predicted by

critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in

subcritical and supercritical phases, and scaling laws between anomalous exponents.

DOI: 10.1103/PhysRevLett.108.208102 PACS numbers: 87.19.lj, 64.60.aq, 64.60.av, 87.19.ll

The notion of an avalanche flows naturally from the
basic operation of the brain’s network. Neurons influence
the firing of other neurons through a network of axons,
synapses, and dendrites [1]. These connections allow neu-
ronal firing to propagate, leading to avalanches of activity
[2]. Like avalanches seen in physical systems such as
earthquakes, nanocrystals, and magnets, the sizes of neuro-
nal avalanches are typically power law distributed [2–5]. In
condensed matter systems, the power law distribution of
avalanche sizes has been explained by use of the theory of
critical phenomena associated with phase transitions [4].
While power law distributions of neuronal avalanches
suggest that neuronal networks may also operate near a
critical point, this hypothesis is controversial due to the
many possible mechanisms of generating power law dis-
tributions and the limited resolution of available experi-
mental data [6–10].

Here, we go beyond power law analysis by demonstrat-
ing that data from high-resolution measurements of cul-
tured cortical slices taken from rats show the emergence of
quantitative universal avalanche dynamics across many
scales. These universal dynamics are found by analyzing
the mean temporal profiles of the experimentally measured
avalanches over a wide range of durations. Standard rescal-
ing of the axes according to theory with no adjustable
parameters collapses the data and yields a single universal
scaling function [4]. The emergence of universality dem-
onstrated by data collapse is among the most striking and
generic predictions of criticality and is much less subject to
a multiplicity of explanations than power law analysis
alone [4,11–13]. Additional characteristics of systems
near criticality include relations between scaling exponents

and two distinct phases on both sides of the critical point,
which were also present in our data. We emphasize
that in addition to confirming the presence of criticality,
our results provide a highly detailed picture of neuronal
avalanche dynamics.
To generate sufficiently high-resolution data, we re-

moved 400 �m thick slices of cortical tissue from living
rats, cultured them until they reached maturity (approxi-
mately one month), and placed them on an array of 512
electrodes spaced 60 �m apart as shown in Fig. 1(a)
[see Supplemental Material (SM) [14]] [15]. Our array
allowed us to generate time series of voltage spikes (firing
events) from 100–340 individual neurons at a spacing
where synaptic connections are relatively likely [see
Figs. 1(b)–1(d)] [16]. From this data we resolved ava-
lanches of firing events [Figs. 1(e) and 1(f)]. For further
details, see SM [14]. In contrast, previous work used arrays
with electrode spacings of 200–500 �m limiting data col-
lection to either widely spaced neurons [17] or to lower
resolution local field potential (LFP) data [2,18]. LFP data
convolve all electrical activity over a wide area. This
convolution, combined with the fact that related analyses
are usually limited to seeking power laws, makes drawing
conclusions about criticality difficult [6–10].
Analysis of the avalanche data indicates that like many

avalanching systems, cortical tissues can be in one of two
phases: one in which the avalanches are small and die out
quickly, and another in which avalanches are large and tend
to span the size of the system. Between these two phases
there is a critical point, where the distribution of avalanche
sizes follows a power law. The renormalization group
predicts that the dynamics near the critical point have
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universal (i.e., detail independent) scale-invariant proper-
ties [4]. The independence from microscopic details
implies that an appropriate simple model will capture the
universal dynamics near the critical point.

To probe the universality class, we use a modified ver-
sion of the discrete time-step model studied by DeVille
et al. [19,20] (see SM [14]). At any time step each of the N
neurons in the system is either firing or not firing. If neuron
i fires at time t, then it has probability pij to trigger neuron

j to fire at time tþ 1. Here we use transfer entropy tech-
niques to extract all triggering probabilities pij for each

experimental sample (see SM [14]). These probabilities are
then built into the model simulations so that for each

experiment we have a corresponding set of triggering
probabilities and simulation results.
The data taken from both experiment and simulation are

structured as a collection of time series of firing activity,
one per neuron. In both cases an avalanche is defined by a
consecutive sequence of time steps for which there is firing
activity, bounded before and after by a time interval of
zero activity [see Figs. 1(d)–1(f)]. Each avalanche has a
corresponding duration (number of time steps with unin-
terrupted activity), size (total number of neurons that fired
during the avalanche), and temporal profile or shape (a plot
of the number of neurons that fire in each time step during
the avalanche).

FIG. 1. Recording avalanches from cortical tissue.
(a) Micrograph of cultured cortical slice on a 512 electrode
array. Black rectangle (1 mm� 2 mm) added to highlight
location of array. (b) Voltage trace from one electrode.
Arrow marks a spike from an individual neuron, expanded in
(c). Time of spike is marked by black dot. (d) Raster plot of
spike times (dots) from many neurons over a 48 s interval.
Recordings lasted up to 8 h. (e) Expanded view of network
activity reveals an avalanche. Each frame represents the array
at one 5 ms bin. Small dots are electrode locations; large dots
are spikes on array. An avalanche consists of consecutively
active frames, bracketed by inactive frames, as shown here.
(f ) Avalanche shape is obtained by plotting the number of
spikes in each frame versus time.
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FIG. 2. Contrasting size and duration distributions and average
size for fixed duration from a critical data set (left) and a
subcritical data set (right). Experimental data are shown by lines
with markers and data from the corresponding models are shown
by smooth lines. Note that each experimental data set has its own
simulation as we use information from the experiment to deter-
mine the parameters of the simulation (see SM [14]). The dashed
lines on the left (near critical) column correspond to power laws
with exponent 1.7, 1.9, and 1.3, corresponding to the critical
exponents �, �, and 1=��z, respectively. These values satisfy the
exponent relation ��1

��1 ¼ 1
��z , as is expected for a system near

criticality. Statistical error bars are only significant for the largest
and longest events for the experimental data and are too small to
see in the figure for the simulations.
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Histograms of avalanche sizes and durations from
experiments and simulations are shown in Fig. 2. Scaling
theory predicts the functional forms for these distributions
near a critical point:

fðSÞ � S�� (1)

fðTÞ � T�� (2)

hSiðTÞ � T1=��z; (3)

where f is the probability density function of the associ-
ated variable, S is the size of a neuronal avalanche, T is the
duration, and hSiðTÞ is the average size conditioned on a
given duration [4]. The parameters �, �, and 1=��z are
critical exponents of the system and are expected to be
independent of the details of the system or model, i.e., to be
the same for all systems in the same universality class [4].
These forms are valid near criticality for intermediate
length and time scales [4], although what constitutes
‘‘near’’ can vary from exponent to exponent. For example,
relation (3) above is valid quite far from criticality.

For some experiments, the power law region of the
avalanche size distributions spans two decades (Fig. 2),
which is the largest range that can be expected for experi-
ments that track on the order of 100 neurons. This range of

scaling is comparable to cutting edge work on avalanching
critical points in condensed matter systems [13].
For the two critical data sets, we found the following

exponents: � ¼ 1:6� 0:2, � ¼ 1:7� 0:2, and 1=��z ¼
1:3� 0:05. Consistent, well-defined, critical exponents
are only expected near criticality. To study the origin of
the best characterized exponent, 1=��z, we simulated the
neuronal network under different sets of assumptions.
Possible factors affecting the value of 1=��z include
network structure as encapsulated in pij, as well as other

key physiological properties of neurons such as a refrac-
tory period for the neurons and storage of electrochemical
potential. Simulations with refractory periods and stored
electrochemical potential added to the model whose
network structure was all-to-all failed to reproduce the
exponent. In contrast, in simulations with network struc-
tures that were given by the appropriate pij drawn from

experiments, the model predicts the same value for 1=��z
(1.3) as obtained in experiments. It also captures qualita-
tively the form of the size and duration distributions. Thus,
the simulation results are satisfactory, considering the
remarkable simplicity of the model. If pij is a constant p

for all pairs of neurons, 1=��z ¼ 2:0. The sensitivity of
the scaling exponents to the matrix pij clearly indicates

that the structure of the network qualitatively affects the
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FIG. 3 (color online). Avalanche shape collapses. Shapes and attempted collapses from three data sets: two experimental and one
simulated. Shapes are produced by averaging the temporal profiles of all avalanches of a particular duration; different colors here
represent different durations. The collapses are plotted by rescaling the horizontal and vertical axes. The left- and rightmost data
correspond to experimental data close to and far from criticality, respectively (note these are the same data sets used in Fig. 2). Sample
8 clearly shows the roughly parabolic shapes in the raw data and a corresponding very clean collapse, as would be expected from
critical data. Sample 6 shows neither. The middle plots are a simulation of sample 8, using transfer entropy data from that set [14].
They clearly show similar shapes and collapse to a universal scaling function.
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critical dynamics and is the primary factor determining the
value of 1=��z.

Scaling theory also predicts exponent relations. In
particular, the above three exponents are related as [4]

�� 1

�� 1
¼ 1

��z
: (4)

The experimental exponent values in the critical sample
shown in Fig. 2 (left column) are consistent with this
relation.

One of the most stringent predictions of the theory of
dynamic critical phenomena is that the mean temporal
profile of avalanches is universal across scales (data col-
lapse). For avalanches of duration T we can write down the
average number of neurons firing, s, at time t as

sðt; TÞ � T1=��z�1F ðt=TÞ; (5)

where F is a universal scaling function that determines
the shape of the average temporal profile. hSiðTÞ and sðt; TÞ
are related by hSiðTÞ ¼ R

T
0 sðt; TÞdt. Since a function has

infinitely more degrees of freedom than a single number,
scaling functions contain more information than scaling
exponents, and collapses fail faster as one moves away
from criticality. Near the critical point, plots of t=T versus

sðt; TÞT1�1=��z for different T will collapse onto the same
universal scaling function, F .

The two critical data sets collapse extremely well to
scaling functions F while the other eight data sets do
not. Figure 3 shows avalanche shapes for avalanches with
three different durations. We fit the scaling functions using
a set of orthonormal polynomials [5] and found that the
functions are very close to parabolas as predicted by mean
field theory, in contrast to experiments in other systems
where large asymmetries or flattening are present [5,13].
Each shape collapse contains data from tens of thousands
of points and is not a statistical artifact, as shuffled data sets
do not collapse (see SM [14]).

The other eight data sets are in either subcritical or
supercritical phases. That cultured samples can take on a
range of noncritical behavior (Fig. 4) has been suspected
from LFP data and has even been controlled by the use of
drugs [2,21,22]. Both network topology and connection
strength influence the phase of a given sample. In-
creasing the number or the strength of connections in
a network moves the network toward supercriticality
(see SM [14] for example) consistent with simulation
results [19]. Based on the histograms, exponent relations,
and data collapse, it appears that sample 8 is close to the
critical point while sample 6 is subcritical. Our findings are
consistent with cultured experiments showing that net-
works slowly pass through subcritical, supercritical, and
critical phases over weeks of development [23]. For mature
cortical tissue, departures from criticality may correspond
to pathological states. Recent studies suggest that epilepsy
is one such state [24].

The above analysis focused on high resolution measure-
ments of organotypic cortical cultures. Use of these cul-
tures allowed us to analyze the activity of large numbers of
individual neurons and obtain detailed information about
the shapes of avalanches and their scaling (see Fig. 3). The
neuronal networks in cortical cultures are thought to cap-
ture many of the gross patterns of connectivity found in
intact brains [25], suggesting that our results may be
relevant for intact brains. Experiments using lower resolu-
tion local field potential measurements on intact brains
have succeeded in demonstrating power law avalanche
size and duration distributions [18] but have not succeeded
in demonstrating shape collapse. We also analyzed data
from 10 dissociated cultures of cortical neurons, where
connectivity is known to substantially differ from organo-
typic cultures [26]. While data from dissociated cultures
contained far fewer neurons (� 40) than in the organotypic
data sets, we observed approximate shape collapse for
seven samples, but with different critical exponents than
those observed in organotypic samples (see SM [14] for
representative collapse).
Power law histograms of avalanches in local field

potential data have long been suggestive of nonequilibrium
critical behavior, but are not sufficient evidence of critical-
ity. By collecting signals resolved for closely spaced indi-
vidual neurons and extracting universal scaling exponents
and functions, we provide compelling evidence that net-
works of cultured cortical neurons can operate near a

FIG. 4. Avalanche size histograms from three different samples
of rat cortex. The horizontal line represents a path in some
representative (such as increasing mean connection strength or
increasing number of connections) direction in the complex pa-
rameter space of network, representing how critical the sample of
interest is. As we move along this path towards greater network
connectivity, samples change from having early exponential cut-
offs, to straightforward power laws, to having humps in their
distribution. These humps could be caused by the possibility that
the finite system size, rather than the degree of network connection,
is constraining the size of the largest events. These histograms
show that different samples exist at different points in the phase
diagram, such as the mean connection strength with fixed network
topology, toward increasing excitability. Factors that determine the
phase of a given sample include number of connections and
connection strength. Simulations using a mean field (all-to-all
connectivity) version of our model can move along the phase
diagram by increasing connection strength [19,20]. Experiments
have used drugs to move the network along this line in the
parameter space [2,21,22].
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critical point. In contrast to condensed matter and geologi-
cal systems, criticality in cortical tissue has additional
significance through its relation to optimal information
processing, information storage, dynamic response, and
computation [2,21,22,27–30]. The collapse of avalanche
data onto a universal scaling function as predicted by the
theory of dynamic critical phenomena provides a clear
demonstration of quantitative universality in a biological
system [31–34]. The success of a simple model utilizing a
complex, empirically determined network shows that the
critical dynamics depend intricately on a unique network
structure. Finally, the existence of both critical and non-
critical samples and a criterion for distinguishing them
opens the door for precise experimental tests of the hy-
pothesis that critical neuronal networks function optimally.
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