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When nematic liquid crystals are constrained to a curved surface, the geometry induces distortions in
the molecular orientation. The mechanisms of the geometrical frustration involve the intrinsic as well as
the extrinsic geometry of the underlying substrate. We show that the nematic elastic energy promotes the
alignment of the flux lines of the nematic director towards geodesics and/or lines of curvature of the
surface. As a consequence, the influence of the curvature can be tuned through the Frank elastic moduli.
To illustrate this effect, we consider the simple case of nematics lying on a cylindrical shell. By combining
the curvature effects with external magnetic fields, the molecular alignment can be reoriented or switched
between two stable configurations. This enables the manipulation of nematic alignment for the design of

new materials and technological devices.

DOI: 10.1103/PhysRevLett.108.207803

Nematic order on rigid or flexible curved substrates
represents an intriguing field to explore, motivated by
mathematical elegance and applications in soft condensed
matter. Nematic liquid crystals consist of aggregates of
rodlike molecules with orientational ordering [1], that is,
described through a unit vector n, called the director. The
existence of a locally preferred direction and the resulting
anisotropic optical properties make liquid crystals very
suitable for electro-optic devices. In several liquid crystals
displays, the alignment of the molecular field is driven
through an active matrix, allowing us to continuously apply
voltage wave forms at every pixel. Other classes of liquid
crystals devices exploit the bistability, i.e., the existence of
two zero-field minimum energy orientations. Generally,
such a behavior is achieved using chemical treatments
of delimiting surfaces combined with external electric
fields [2,3].

When nematics are confined on curved surfaces, the
molecular field is influenced by both geometrical and
topological constraints. In closed surfaces with spherelike
topology, topological frustration unavoidably forces the
presence of defects, i.e., points in which the director is
undefined. This peculiarity provides a promising way to
design supramolecular atoms with controllable valence
[4]. Different defect structures have been observed
in colloids coated with thin nematic films [5,6].
Furthermore, anisotropic ordering on surfaces with bend-
ing elasticity is common in biological membranes, where
the competition with the membrane elasticity plays a
prominent role in the growth [7] and morphology [8,9]
of these systems. Finally, it should be mentioned that the
study of superfluid helium on curved corrugated surfaces
shares the same mathematical formalism with two-
dimensional nematics [10].

0031-9007/12/108(20)/207803(5)

207803-1
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In this Letter, we focus on the influence of the extrinsic
geometry of a substrate on the alignment of nematics
coating it. Powers and Nelson [11], for nematic flexible
membranes, and Santangelo et al. [12], for columnar
phases, have already considered director—substrate cou-
pling introducing ad hoc terms in the free energy. A
similar approach has been developed by Biscari and
Terentjev [13] in the framework of the order-tensor the-
ory. Here, we show that the influence of the extrinsic
geometry is a direct consequence of the adaptation of
the Frank continuum theory to surface director fields.
Consequently, the alignment of the molecular field on a
cylindrical surface can have one or two stable configura-
tions, depending on the ratio between the twist and the
bend elastic constants. External magnetic fields can be
applied to drive the director orientation or to switch it
between two locally stable states.

It is well-known that the Frank free energy penalizes
nonuniform nematic configurations by associating a cost
to any spatial derivative of n. In earlier models of two-
dimensional nematic order [14-18], the director energy is
formulated by using the covariant derivative of n. Thus,
the extrinsic geometry of the substrate is automatically
ruled out from the alignment mechanisms. However, the
derivative of a vector field lying on a surface S possesses
a tangent component, which is its covariant derivative,
and a normal component that depends on the second
fundamental form of S. When the latter is taken into
account in the Frank potential, it produces a coupling
between the director field and the curvature principal
directions of S.

We start from ordinary nematics, where the energy due
to the distortion of the molecular field is given by the
celebrated Frank formula
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1
Wnem = 5 f [Kl (diVn)2 + Kz(l] . Curln)2
\%4
+ K;5|n X curln|?]dv, (1)

where K|, K,, and K3 are positive constants, whereas V
represents the spatial domain that the nematic occupies.
Pictures of the distortions corresponding to each energy
term (the splay, twist, and bend energies, respectively) are
given in all books on the fundamentals of liquid crystals
theory.

When the director is regarded as a surface field, it is
customary to assume that the twist term vanishes [6,19,20].
On the contrary, we find that generally, the twist energy
does not vanish. An example is given by a tangential unit
vector field n forming a constant angle (different from O
and 7) with the generatrices of a cylindrical surface.
Indeed, as we will see below, the twist term, together
with part of the bend energy, is responsible for the coupling
between the director field and the substrate geometry.

In order to deal with surface free energies, we have
recently explored the possibility of deriving a two-
dimensional model as a limiting case of Eq. (1) [21].
Thus, we have considered that the nematic fills a thin
region of thickness 4 around a regular surface S. With
the assumptions (i) n aligns parallel to the surface S,
(i) n does not change in the thickness, and (iii) 4 is
much smaller than the minimal radius of curvature of S,
Eq. (1) reduces to

1
WS, = 3 f[kl(divsn)2 + ky(n - curl;n)?
s

+ ksy|n X curl,n|*]da, ()

where k; = hK;. The differential operator div; and curl;
denote the surface divergence and the surface curl, respec-
tively. Let » represent the normal to the surface and
t = v Xn the conormal vector of n (Fig. 1). Thus,
divin = K, whereas in the Darboux basis {n, t, »} we
have curlon = —7,n — ¢c,t + k,». Here, we have intro-
duced the geodesic curvatures of the flux lines of t and n

FIG. 1 (color online). Representation of the Darboux frame
{m, t, }. At each point of the surface S, the unit vector n points
along the optical axis. The unit vector t, orthogonal to n, lies on
S. v is the normal to the shell.

denoted by k; and k,, respectively, the normal curvature
¢n, and the geodesic torsion 7,,. We refer the reader to the
book of do Carmo [22] for a more comprehensive treatise
of the geometry of surfaces.

Consequently, Eq. (2) can be recast in the form

1
Win =5 [ (ki + lari + ksl + A)lda @)
N

that lends itself well to an elegant and intuitive geometrical
interpretation. From the geometry of surfaces we know that
geodesic and torsion curvatures of a curve lying on a
surface measure the deviance of the curve from following
a geodesic or a line of curvature, respectively. Thus, from
Eq. (3), we can recognize that the splay term tends to put
the flux lines of t along geodesics of S as well as the part of
the bend energy proportional to k2 tries to put n along
geodesics of S. In a similar way, the twist energy favors the
alignment of the flux lines n with lines of curvature of S.
Finally, the term proportional to cZ is minimized when n
aligns with the principal direction of minimal curvature
(in modulus).

To emphasize the difference with the models accepted in
the literature, we write the simplest form of classical
surface free energy

k k
Wi = 3 [SD“nBDanﬁda =5 fS(K% + kZ)da, (4)

where k is a positive constant, and D denotes the covariant
derivative. We compare (4) with a one constant approxi-
mation version of (3)

k k
Wi = 5 f |V.n|*da = 3 f(K% + 72 + k% + ci)da.
s s

Thus, in the classic energy Eq. (4) the twist energy, as well
as the term proportional to c3, are missing. This mismatch
can be explained by observing that the derivative of a
vector n tangent to S along a direction u of the surface,
namely, the surface gradient of n composed with u, can be
written as (V,n)u = Dyn + (n - Lu)w, where L denotes
the extrinsic curvature tensor. On the other hand, the
components of L in the Darboux frame are L,, = ¢,
L, =cand L,, = L,, = —7,. Thus, the extrinsic curva-
ture influences the free energy. However, apart from the
trivial case of a flat surface, only for spherical surfaces is
the literature model justified, forasmuch 7, = Oand ¢, is a
constant [6,16,23]. The twist term can be also neglected
whenever one takes n along meridians or parallels of an
axisymmetric surface [19].

Another interpretation of this result can be done within
the covariant geometry formalism (see Appendix A of
Ref. [24]). When considering nematic order on a shell,
one starts by changing the three-dimensional flat space
coordinates to Gaussian normal coordinates where two
directions are the local coordinates on the shell and the
third coordinate is perpendicular to it. The missing terms
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FIG. 2 (color online). Schematic representation of the solu-
tions a,, a., and «@;, . The flux lines of n align along genera-
trices, circles, and helices of the cylinder, respectively.

arise because some of the Christoffel symbols in the thick-
ness direction do not vanish. In particular, I';;; = L;; and,
therefore, derivatives along the perpendicular direction
become covariant derivatives. This happens even if, like
in our case, there is no explicit functional dependence of
the director on the thickness direction.

However, this scenario can be further complicated by the
presence of topological defects. In such a case additional
terms must be added to describe the strength of the source
or vortex at the singular points. For the sake of simplicity,
hereinafter we discuss the case of a cylindrical shell, where
the Poincaré-Hopf theorem ensures that no singular points
are induced by the topology.

We consider a cylindrical surface of radius r and height
L. This case provides an easy example where geodesics
(generatrices, circles, and helices) and curvature lines
(generatrices and circles) are immediately recognizable.
Let us introduce a set of cylindrical coordinates (¢, z) as
a set of local coordinates. Thus, e, and e, will be unit
vectors pointing in the radial and azimuthal directions,
respectively. We denote with a(¢, z) the angle between
the director and the parallel circles, and hence, the director
is represented by n = cosae, + sinae,. Consequently,
the total surface free energy becomes

L 27 k k
Wem = [ dz[ rd¢|:—22sin22a + —;cos“a
0 0 4r r
+ky(t- V@) + ks(n - Vsa)2:|, 5)

where Vi = r7'(9,a)e, + (3, a)e..

We look for constant solutions for the equilibrium equa-
tion associated with Eq. (5). Uniform alignments along
generatrices a, = 7 and circles @, = 0 of the surface are
always equilibrium configurations. Furthermore, whenever
ky > 2ks, itis found a,, = *4 arccoskzkjk3 ; i.e., flux lines
of n align along cylindrical helices (Fig. 2). By a direct
inspection of the second variation of Eq. (5), we deduce
(i) a, is the absolute minimum of the free energy, (ii) a, is
locally stable whenever k, > 2k; and unstable whenever
0 = ky = 2k3, and (iii) a,, are always unstable.

We remark that in the literature models the first two
terms in the integrand of Eq. (5) do not appear. As a
consequence, any homogeneous (« = constant) configura-
tions should be an equilibrium configuration with vanish-
ing elastic energy. This clearly goes against physics
intuition; indeed, whenever & # 7 the director aligns along
helices or circles that are curves that bend in the space and,
hence, they possess nonvanishing twist and bend energy.

We now study the influence of an external magnetic field
on the stability of the solutions. In the presence of an
external magnetic field H, the additional energy term

wo =% [ - mrda ©)
N

describing the field—matter interaction, should be consid-
ered. It expresses the tendency of n to align parallel or
orthogonal to H depending on the sign of the diamagnetic
anisotropy x,. In the sequel, we assume y, > 0. We con-
sider an azimuthal field H = He,, where the strength H is
assumed to be constant. According to Ampere’s law, such a
field can be produced by a conducting wire situated along
the cylinder axis. Thus, in the presence of an azimuthal
magnetic field, the constant solutions satisfy the equation

sin2a[(A — 1)cos2a — 1 + b%] =0, 7

where A = k,/k; denotes the nematic elastic anisotropy

and b = Hry/x,/ ks represents the reduced magnetic field
strength. Equation (7) admits always the trivial solutions
a, and a,, whereas the solutions

* arccos1 -
a, = *—
h 2 A—1
are admitted provided that A <1 and A < b> <2 — A or
A>1and 2 — A < b? < \. Hereinafter, we report differ-
ent stability behavior depending on values of the parameter
A. The latter changes for different nematics, and it is
temperature-dependent [25,26].
Whenever A < 1, the stability analysis of the solutions
predicts the existence of two critical thresholds

.=+ bl=\2—-A (8)

The director aligns along the cylinder generatrices unless
the reduced applied field does not exceed b... When bl <
b < bll, the sole stable solutions are «j, . Above bl the
nematic director aligns along the circles of the surface.
The change of alignment occurs smoothly as the field
approaches the threshold values. The bifurcation diagram
reported on the top of Fig. 3 mimes the behavior of the
splay Freederickzs transition of a nematic cell with weak
planar anchoring boundary conditions.

Within the one-constant approximation (A = 1), only
the solutions @, and «, are admitted. The thresholds by,
and b”. become equal to 1 and the phase transition between
a, and a, becomes of the first order. Thus, at the critical
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FIG. 3 (color online). Bifurcation diagram, « versus the
reduced magnetic field b, for 0 = A <1 (top), A = 1 (middle),
1 < A =2 bottom. The continuous, dashed, and dotted lines
represent stable, metastable, and unstable configurations,
respectively.

field, the director alignment abruptly switches between the
two allowed states.

In the case 1 < A = 2, the nontrivial solutions a),, are
unstable. The solutions a, and a, are unstable for b = by,
and 0 = b = b/, respectively. In the range b\, < b <b.,,
both the solutions are locally stable. The complete bifur-
cation diagram is sketched on the bottom of Fig. 3.
Contrarily to the two previous cases, here the phenomenon
is not reversible. In fact, starting from the fundamental
configuration @, and increasing the field strength, a,
switches to «, when b exceeds bl,. By lowering the applied
field, a, switches to a, at the critical threshold b’.

Finally, we discuss the case A > 2. This case differs
from the previous, since in absence of any external field
both the solutions @, and «, are minima. This suggests a
potential way to design a bistable optical device, provided
that a mechanism to switch between the two minima can be
implemented. To achieve this aim, we can exploit two
magnetic fields, one azimuthal as before and the other
uniform in the e, direction. In fact, @, becomes unstable
whenever b overcomes the critical field b.. The total
energy at the critical threshold b.,, represented by the
dashed line in Fig. 4, shows how the azimuthal magnetic
field destabilizes the configuration a,. Once by, has been
exceeded, the external field can be relaxed, leaving the

kamwL
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R
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/ N
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FIG. 4. Total energy as a function of the angle «, with zero
field (continuous line), at the critical azimuthal threshold (dashed
line) and at the critical axial threshold (dash-dotted line).

system in the local minima «,.. To perform the reverse path,
we consider the uniform magnetic field H, = H_e,. This
field tends to rotate the molecules in the direction of the
generatrices, and therefore, it destabilizes the solution «,.
More precisely, by setting b = H,r\x,/k3, @. becomes
unstable whenever b = b, = +/A — 2. Coherently, the
energy at the critical threshold b, exhibits a unique mini-
mum placed in @ = 7.

To summarize, there are not physical or geometrical
reasons to discard a priori the effects of the extrinsic
curvature in two-dimensional curved nematics. Indeed,
the classic Frank theory, when applied to surface fields,
implies that twist and bend energies are responsible for the
coupling between the directory and the curvature of the
substrate. An application of our model to nematics lying on
a cylindrical substrate demonstrates that curvature influen-
ces the stability of the molecular alignment. When this
effect is combined with effects due to an applied magnetic
field, it produces a miscellaneous collection of alignment
properties potentially useful in the design of new techno-
logical optical devices. The alignment mechanism can be
triggered with moderate magnetic fields. For instance, by
taking r ~ 10 um and by considering values for MBBA
near 25 °C (see page 330 of Ref. [27]), we obtain a critical
magnetic field on the order of 10* oersted.

Another suitable setting allowing us to validate our
approach follows. We consider a nematic with strong
planar anchoring boundary conditions, «(0, ¢) =
a(L, ¢) = 0. Whenever k, <2k;, the configuration
a = 0 is stable unless L does not exceed the critical value

Lo = 7k, /(2k; — k,). In other words, the competitive

effects between the curvature, which prefers the configu-
ration @ = 7/2, and the anchoring, which tries to restore
the configuration a = 0, induce a sort of Fréedericksz
transition in the alignment. In the regime of slim cylinder
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L > r, a thick central zone where the director aligns along
the cylinder axis and two narrow regions close to the
boundaries where the solution changes rapidly to satisfy
the boundary conditions should be observed. On the other
hand, the classical model predicts that the unique admitted
solution is & = 0.

We believe that our study will provide a novel paradig-
matic description of two-dimensional systems with
nematic ordering. The examples we have analyzed suggest
possible experiments to be carried out to effectively test
our model, which is in significant disagreement with the
models commonly accepted. However, we are confident
that this result may be important for future studies of
nematic alignments in other geometry and topologies,
location control of topological defects, nematic-mediated
interaction on substrates, and influence of nematic ordering
in morphology and growth of living membranes.
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