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Inspired by the recent discovery of a new instability towards a chiral phase of the classical Heisenberg

model on the kagome lattice, we propose a specific chiral spin liquid that reconciles different, well-

established results concerning both the classical and quantum models. This proposal is analyzed in an

extended mean-field Schwinger boson framework encompassing time reversal symmetry breaking phases,

which allows both a classical and a quantum phase description. At low temperatures, we find that quantum

fluctuations favor this chiral phase, which is stable against small perturbations of second- and third-

neighbor interactions. For spin-1=2, this phase may be, beyond the mean field, a chiral gapped spin liquid.

Such a phase is consistent with the density matrix renormalization group results of Yan et al. [Science 332,

1173 (2011)]. Mysterious features of the low-lying excitations of exact diagonalization spectra also find an

explanation in this framework. Moreover, thermal fluctuations compete with quantum ones and induce a

transition from this flux phase to a planar zero flux phase at a nonzero value of the renormalized

temperature (T=S2), reconciling these results with those obtained for the classical system.
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With the extensive degeneracy of its classical ground
state, the antiferromagnetic Heisenberg model on the ka-
gome lattice was recognized early on as the paradigm of a
quantum spin liquid phase [1]. The recent experimental
discovery of Herbersmithite, a kagome compound fluctu-
ating down to temperatures thousands of times lower than
the coupling constant, strengthens this speculation [2].
Despite numerous efforts, the nature of the ground state
(GS) of the spin-1=2 Heisenberg antiferromagnetic ka-
gome model (AFKM) remains controversial. Exact quan-
tum approaches point to the absence of long-range order
[3–5]. Although exact diagonalizations (ED) on small
samples (up to N ¼ 36 sites) leave open the question of
the criticality [6,7], density matrix renormalization group
(DMRG) calculations [8] support the idea of a true gapped
spin liquid.

Recently, a new instability of the degenerate classical
model towards a chiral phase has been discovered [9]. In
this Letter, we show at a mean-field level that the hypothe-
sis of a chiral spin liquid holds and is consistent with
numerous robust results accumulated during the last 20
years, both for spin-1=2 and in the classical limit [10–13].

The properties of chiral spin states, with simultaneously
and spontaneously broken space reflection (P) and time
reversal (T) symmetries, were largely debated at the end of
the 1980s in the wake of the quantum Hall effect. A revival
of these topics has occurred, thanks to graphene and flat
band insulators. Wen et al. [14] defined the chiral phases
through the fluxes of the underlying gauge fields, and
Kalmeyer and Laughlin [15] proposed to describe spin
liquids by Laughlin wave functions. Yang et al. [16] sug-
gested that the Heisenberg model on the kagome lattice

might be in a chiral spin liquid state. We reexamine this
suggestion inspired by the knowledge of the classical non-
planar spin order, described in Fig. 1, and propose a
specific chiral spin liquid as the GS of the spin-1=2AFKM.
The kagome lattice can be viewed as a lattice of corner

sharing triangles. The classical ground state on a single
triangle is planar, with three spins at 120 degrees. Fixing
the spin plane on a triangle does not fix the planes on
adjacent ones, hence the extensive ground-state degener-
acy. This degeneracy can be lifted by couplings beyond
nearest neighbors. We consider the following J1-J2-J3h
Hamiltonian with J1 ¼ 1:

FIG. 1 (color online). Description of the cuboc1 order. Left: on
the kagome lattice, each color corresponds to a different mag-
netic sublattice. The thick line indicates the 12-site unit cell.
Right: arrows are the spin orientations, with the same color
coding as in the left figure. The black lines connecting the
ends of the vectors form a cuboctahedron. On each triangle,
the spins are coplanar at 120 degrees; for opposite sites on each
hexagon, spins are antiparallel. The triple products (determinant)
of three spins of the hexagons, either first or second neighbors,
are nonzero and measure the chirality of the phase. They change
sign in a mirror symmetry or in a spin flip.
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H ¼ X

hi;ji�
J�Ŝi � Ŝj; (1)

where the coupling constants and exact classical phase
diagram are given in Fig. 2. AFKM refers to this
model when J2 ¼ J3h ¼ 0. For J3h ¼ 0, numerous studies
of quantum states have been motivated by the two

planar classical states denoted q ¼ 0 (J2 > 0) and
ffiffiffi
3

p �ffiffiffi
3

p
(J2 < 0) [11,12,17–19]. An infinitesimal antiferromag-

netic third-neighbor interaction across hexagons (J3h > 0)
lifts the degeneracy of the classical AFKM to a
12-sublattice magnetic state where the spins point toward
the corners of a cuboctahedron (Fig. 1), hence the name
cuboc1. This order was first introduced by Janson et al.
[20], who claim that this J3h > 0 interaction should be of
experimental relevance. This order is chiral: it breaks
mirror symmetry.

Monitoring the evolution under the effect of quantum
fluctuations from the classical limit to the disordered
spin-1=2 system remains a challenge. The Schwinger bo-
son mean-field theory (SBMFT) is an approximate but
versatile method to study, in an unified framework, both
long-range ordered (LRO) and gapped spin liquid phases,
from the classical to the quantum limit. In a first enlighten-
ing work, Sachdev [17] showed that, amongst the planar

states, the
ffiffiffi
3

p � ffiffiffi
3

p
is more stable than the q ¼ 0 at the

AFKM point. In order to study the present model [Eq. (1)]
around the AFKM point, we extend Sachdev’s work in
several directions, as will be seen below.

The Schwinger boson operator b̂yi� (� ¼" or # ) creates a
spin-1=2 on lattice site i. A physical spin s at site i is

represented by 2s bosons. After a mean-field decoupling,
the Hamiltonian reads

HMF¼
X

hi;ji�
J�ðBijB̂

y
ij�AijÂ

y
ijÞþH:c:�X

i

�in̂iþ�0; (2)

where the bond operators are defined by 2Âij ¼ b̂i"b̂j# �
b̂i#b̂j" and 2B̂ij ¼ b̂yi"b̂j" þ b̂yi#b̂j#. Aij and Bij are the

associated complex mean-field parameters to be deter-
mined by the self-consistency equations. The fAij;Bijg
set is called an Ansatz. �i are Lagrange multipliers to
constrain the mean boson number: hn̂ii ¼ 2S and �0 ¼P

hi;ji�J�ðjAijj2 � jBijj2Þ þ 2S
P

i�i, where S is a con-

tinuous real positive mean-field parameter.
Most SBMFT studies use only one of the two types of

parameter (A or B). Recently, taking both fields, Mezio
et al. [21] found a much better description of the excitation
spectrum of frustrated systems. More specifically, the A
fields describe the singlet amplitudes, whereas theB fields
allow the description of boson hopping amplitudes, which
are a fundamental ingredient, to describe the mixing of
spin singlets and triplets on each bond, a mechanism that
is central in quantum frustrated magnets [22]. In addition,
because both ferromagnetic and antiferromagnetic interac-
tions are treated on an equal footing, the phase diagram
can be explored continuously around the origin, regardless
of the sign of the coupling parameters.
Solving the full problem with two complex parameters

per link and one real Lagrange multiplier per site is too
numerically demanding for large lattices. Looking for spin
liquids or regular LRO [9], we assume �i ¼ �, andA and
B are invariant under lattice symmetries up to a local
gauge transformation. Using projective symmetry groups
(PSGs) [23], Wang and Vishwanath [18] obtained four
Ansätze, where physical observables are invariant under

lattice symmetries. They are defined by the fluxes of the Â
operators on specific loops , ð�; 0Þ,
ð0; �Þ, and ð�;�Þ. ffiffiffi

3
p � ffiffiffi

3
p

and q ¼ 0 are associated
with the first two choices, respectively.
The chiral cuboc1 Ansatz, however, cannot be obtained

within this first PSG approach because in chiral states the
lattice symmetries are respected only up to a time reversal
symmetry. In all previous studies, the mean-field parame-
ters were chosen as real, the fluxes equal to 0 or �, thus
excluding chiral Ansätze. The extension of the PSG to
include both the symmetric and the chiral spin liquids
will be described in a longer paper [24]. In short, the new
Ansätze are defined by complex fields with specific con-
straints on the moduli and arguments. Thanks to the PSG
analysis, the number of parameters at the AFKM point is

limited to 2 moduli of bond fields for q ¼ 0 or
ffiffiffi
3

p � ffiffiffi
3

p
,

plus a phase �A1b
for cuboc1. Other bond fields of the

6-spin unit cell are fixed by algebraic constraints (see
Fig. 3 and Table I). Nonzero fluxes [25] (modulo �)
induced by �A1b

are an indirect mean-field measure of the

FIG. 2 (color online). Phase diagram of the model with up to
third-neighbor interactions at T ¼ 0 and J1 ¼ 1. (a) Exact clas-
sical phase diagram (the method used to obtain this phase
diagram and all orders is described in [9]). The point AFKM:
ðJ2; J3hÞ ¼ ð0; 0Þ is a tricritical point. (b) SBMFT phase diagram
for S ¼ 0:5. The tricritical point stands at ðJ2; J3hÞ ¼
ð0:0049;�0:021Þ, and the AFKM point (red circle) is now inside
the cuboc1 phase.
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chirality of cuboc1 (�A1b
is 0 or � for q ¼ 0 or

ffiffiffi
3

p � ffiffiffi
3

p
,

respectively).
The numerical solution of the mean-field equation is

found from a descent method minimizing the sum � of
the squares of the (free) energy derivatives with respect to
the field parameters, each single energy evaluation being
maximized with respect to � (we stop the descent when
�< 10�8). We keep the solutions with hessians of the
correct sign, positive for the A fields and negative for
the B if J > 0, and the opposite if J < 0. These require-
ments imply that our solutions are stable against Gaussian
fluctuations.

The resulting phase diagram at T ¼ 0 and S ¼ 0:5 is
given in Fig. 2(b): at the AFKM point, the cuboc1 Ansatz is
more stable than any other regular Ansatz, with an energy
per site of �0:4717 [26]. The numerical values of the
parameters at this point are given in Table I. The parameter
range of stability of the cuboc1 phase increases when the
spin decreases. For J3h ¼ 0 and S ¼ 0:5, it is J2 2
½�0:005; 0:025� and, for S ¼ 0:366, it is enlarged to J2 2
½�0:008; 0:045�. This increase is another proof of the role
of quantum fluctuations in the stabilization of the cuboc1
phase.

The dimensionless free energy difference (�F=S2) be-

tween the
ffiffiffi
3

p � ffiffiffi
3

p
phase and the cuboc1 phase is given as

a function of S in Fig. 4(a). At T ¼ 0, it is of the order of
10�3 in favor of cuboc1. In the classical limit, S ! 1, the
two phases are degenerate, as they should be. The com-
parison with the q ¼ 0 state is not shown, as it always has a
much higher energy at the AFKM point.
Decreasing S leads to a second-order phase transition

from a gapless LRO cuboc1 phase to a fully gapped chiral
spin liquid at a critical value Sc ¼ 0:4. One should not
hastily conclude that the true spin-1=2 system has Néel
long-range order. In this mean-field approach, the on-site
number of bosons fluctuates: it is only fixed on average, S
is a parameter, and hŜ2i ¼ 3SðS þ 1Þ=2 [27]. For

spin-1=2, the good quantum number is hŜ2i ¼ 3=4. To
recover this good quantum number, we should use the

parameter S ¼ ð ffiffiffi
3

p � 1Þ=2� 0:366. With S ¼ 0:5, the
phase is gapless and finite-size scaling shows a very small
stiffness, while, with S � 0:366, the system is a gapped
spin liquid compatible with the results of Yan et al..
Now, we turn to the effect of thermal fluctuations at the

AFKM point. Figure 4(b) shows how they destabilize the

cuboc1 phase in favor of the
ffiffiffi
3

p � ffiffiffi
3

p
one. The renormal-

ized transition temperature Tc=S2 from the cuboc1 to theffiffiffi
3

p � ffiffiffi
3

p
phase decreases to zero with increasing S [see

the inset of Fig. 4(b)]. This is consistent with classical
numerical simulations showing a selection of a planar state
by thermal fluctuations [11–13,19].
This chiral order hypothesis also explains why the ED

spectra for sizes up to N ¼ 36 have a large number of
singlets below the triplet gap. Let us consider a cell of 12
spin-1=2 describing some short-range order (SRO).

Assuming three spin directions (as for
ffiffiffi
3

p � ffiffiffi
3

p
and

q ¼ 0 SRO), one finds a single S ¼ 0 ground state derived
from the coupling of three spin-2 dressed by quantum
fluctuations. With a 12-sublattice cuboc1 SRO, one finds
132 singlets built, starting from the angular addition of 12
spin-1=2, many of which are low energy states. This crude
picture makes it possible to understand why there are so

FIG. 3 (color online). Unit cell (in dotted green lines) of the
cuboc1 Ansatz (left) and q ¼ 0 and the

ffiffiffi
3

p � ffiffiffi
3

p
Ansätze (right)

at the AFKM point. A1a, A1b, B1a, and B1b are complex link
parameters with constraints on their moduli: jA1aj ¼ jA1bj and
jB1aj ¼ jB1bj and, on their arguments, �A1a

¼ 0 and �B1a
¼

�B1b
¼ �. The constraint on �A1b

depends on the Ansatz: it is 0

for q ¼ 0, � for
ffiffiffi
3

p � ffiffiffi
3

p
, and is not fixed for cuboc1.

TABLE I. Values of the self-consistent SBMFT parameters for
the three competing Ansätze near the AFKM point.

S jA1j jB1j �A1b

q ¼ 0 1=2 0.516 24 0.180 36 0

1 ffiffiffi
3

p
S=2 S=2 0ffiffiffi

3
p � ffiffiffi

3
p

1=2 0.517 06 0.177 90 �
1 ffiffiffi

3
p

S=2 S=2 �
cuboc1 1=2 0.516 60 0.176 16 1.9525

1 ffiffiffi
3

p
S=2 S=2 1.9106a

aThe exact value is �� arctan
ffiffiffi
8

p
.

FIG. 4 (color online). (a) Difference of SBMFT free energy
between the cuboc1 and

ffiffiffi
3

p � ffiffiffi
3

p
Ansätze as a function of S at

T ¼ 0. Inset: zoom of the domain around critical spins Sc.
(b) Same quantity as a function of T for different S. Inset: value
of Tc=S2 versus S (see the text).
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many (63) singlet states below the triplet gap of the
N ¼ 36 sample. Moreover, this property may explain,
through resonances, the stabilization of cuboc1 relative to

the
ffiffiffi
3

p � ffiffiffi
3

p
SRO.

On the other hand, with the hypothesis of a chiral spin
liquid, we expect an eightfold GS degeneracy on a 2 torus
(a factor of 2 for the chirality times a factor of 4 for the
topological degeneracy) at the thermodynamic limit. Thus,
the large number of low-lying singlets seen in ED spectra
should be restricted to small size samples. Such an evolu-
tion has already been observed in the J1-J2 model on
the triangular lattice in the parameter range where the
classical ground state has a 4-sublattice unit cell [28].
Note that the DMRG results do not exhibit a large number
of singlet states below the triplet gap [8].

Spin-1=2 ED results on the N ¼ 36 sample are also
compatible with cuboc1 short-range order: (i) the first
S ¼ 1 state is at the softest k vector of the cuboc1 short-
range order, as can be seen in Fig. 4 of Ref. [6]; (ii) the
dynamical and static structure factors [29] have relatively
larger values at the wave vector of the cuboc1 order than

near the quasisoft points of the
ffiffiffi
3

p � ffiffiffi
3

p
and q ¼ 0 orders.

Thus, correlation functions in large-scale DMRG
computations and/or characterization of low energy exci-
tations by ED for 48 site samples would be an essential
complement to further support or discard the present
proposal.

Moreover, the first spin-1=2 states of small samples
(with an odd-integer number of sites) have nonzero
Chern numbers [4]. This quantum number, first introduced
in such a context by Haldane and Arovas [30], is a topo-
logical index (and thus a robust property) characterizing
the chiral character of a wave function. This property,
which has never been explained in other approaches, could
be understood for chiral spinons [15]. In the same spirit,
the classical chirality defined by the determinant of three
spins (nonzero on hexagons for the classical cuboc1) is
generalized for quantum spins as the imaginary part of the
cyclic permutation operator of spins on closed contours
[14]. This quantity (Wilson loop operator), computed in the
ED GS for different contours, obeys the law expected for a
chiral liquid [24].

We have shown that, within mean-field Schwinger boson
approximation, the kagome antiferromagnet has a chiral
ground state. Spin-1=2 exact results both from ED and
DMRG give some support to this hypothesis. In such a
system, we expect a low temperature chiral symmetry
breaking phase with topologically protected edge states,
as in the quantum Hall systems. The extent of this low
temperature phase, the nature of the phase transition, and
the role of defects—questions already addressed in classi-
cal systems [31,32]—remain open questions.

We thank Grégoire Misguich and Frédéric Mila for
many stimulating discussions. We acknowledge Julian
Talbot for a critical reading of the manuscript.
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