
Nonlinear Hydrodynamics and Fractionally Quantized Solitons
at the Fractional Quantum Hall Edge

P. Wiegmann

James Franck Institute, University of Chicago, 929 57th Street, Chicago, Illinois 60637, USA
(Received 13 December 2011; published 18 May 2012)

We argue that the dynamics of fractional quantum Hall (FQH) edge states is essentially nonlinear and

that it features fractionally quantized solitons with charges ��e propagating along the edge. The

observation of solitons would be direct evidence of fractional charges. We show that the nonlinear

dynamics of the Laughlin’s FQH state is governed by the quantum Benjamin-Ono equation. Nonlinear

dynamics of gapless edge states is determined by gapped modes in the bulk of FQH liquid and is traced to

the double boundary layer ‘‘overshoot’’ of FQH states. The dipole moment of the layer � ¼ 1��
4� is

obtained in paper. Quantum hydrodynamics of FQH liquid is outlined.
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Introduction and results.—In a fractional quantum Hall
state, electrons collectively constitute an incompressible
liquid almost free from dissipation. Excitations in this
liquid are gapped by an energy �� determined by the
Coulomb interaction [1,2]. The gap is large (typically
�1=3 � 10 K) compared with mK temperature, but small

compared with the cyclotron energy (� 25 meV). The only
low energy current carrying states in a FQH liquid are edge
states localized on the boundary [3]. Edge states provide a
valuable tool to probe FQH states.

In most FQH states the excitation gap is large compared
to the energy of long-wave edge states, and for that reasons
is commonly neglected. The standard approach to the
theory of Edge states starts from the Chern-Simons action
in the bulk [4]. This action has no scale. It neglects gapped
bulk modes but focuses on braiding properties of FQH
states. The Hamiltonian of this theory differs from zero
only by a confining potential. The boundary states are
chiral bosons with the algebra

½fðxÞ; fHðx0Þ� ¼ 2�

�
rx�ðx� x0Þ: (1)

In this approach they are treated as long-wave modes
propagating according to the linear wave equation:

_f� c0rxf ¼ 0: (2)

Here fH ¼ 1
�

R fðx0Þ�fðxÞ
x0�x dx0 is the Hilbert transform of

fðxÞ, the unperturbed droplet occupies the half plane
y < 0, x is a coordinate along the boundary. The sound
velocity c0 ¼ @

�1‘2BjryUj is determined by the slope of

the confining potential UðyÞ, ‘B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=2�B

p
is the mag-

netic length and �0 ¼ hc=e.
This theory assumes that a FQH state does not change

toward the boundary and neglects electric polarization
caused by edge waves. This happens if the curvature of
the potential is small compared to the gap ‘2Br2

yU � ��,

but a slope is larger than electric field ‘2BryU � e2. We

accept these conditions.
Physics missed by this otherwise successful theory can

be seen in the following setting. Let us suddenly perturb
the edge by a classical instrument, say an rf source (whose
spatial extent is larger than magnetic length ‘B) and then
release the system. A smooth semiclassical density profile
f0ðxÞ will occur, Fig. 1. How does it propagate along the
edge? The wave Eq. (2) suggests that the initial profile
translates as fðx; tÞ ¼ f0ðx� c0tÞ without changes. This
may be true shortly after the perturbation, but at time of
order of @=�� the profile is expected to change. This time
is short. In typical � ¼ 1=3 samples it is about �1 ps [1],
much less than time scales of dissipation. We show that
already at that time the wave equation fails, giving rise to
new important effects.
Corrections to linear waves (2) come from a few

sources: the curvature of the confining potential, mixing
with higher Landau levels, disorder, and, more interest-
ingly, the interaction between the gapless edge and gapped
bulk modes. The latter is the leading effect in FQHE. It is
the subject of the Letter. We start by listing major results.
(i) We argue that the wave equation receives important

corrections proportional to the scale �� ��‘
2
B=@ of

gapped excitations omitted in the Chern-Simons action.
In this paper we focus only on the simplest FQH state with
a single branch of excitations (Laughlin’s state). We show
that edge modes of the Laughlin state are governed by
the quantum Benjamin-Ono equation, not just a wave
equation (2)

y(x)
x

y

FIG. 1. Boundary waves: the boundary layer is highlighted.
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_f�c0rxf��rx

�
f2

2
�� �rxf

H

�
¼0; �¼1��

4�
: (3)

The new terms in brackets cause new phenomena. One is
particular interesting is fractionally charged edge solitons.

The meaning of the chiral boson is seen from its value
on coherent state with an electronic density �ðx; yÞ. It is a
boundary density fðxÞ ¼ RyðxÞ

0 �ðx; yÞdy, where yðxÞ is a

boundary displacement counted from an unperturbed
boundary y ¼ 0. The bosons act in the chiral Fock space,
where i@�fH þ �rx�f ¼ 0. Here, �f � �i@ �

�f is a

momentum of f. The constraint yields the algebra (1).
(ii) The most interesting and important term in this

equation is the dispersion � � rxf
H. This term reflects

the double boundary layer or overshoot of the equilibrium
Laughlin’s state. That is: a difference �� �I between one-
particle density � of the Laughlin state and the density �I

of integer QH state � ¼ 1 of the same number of particles
but with charges �e is singular on the boundary

�ðyÞ � �IðyÞ þ ��0ðyÞ: (4)

The double layer is illustrated on the Fig. 2.
(iii) The coefficient � is the dipole moment of the

droplet. We show that

� ¼
Z

yð�� �IÞdy ¼ 1� �

4�
: (5)

(iv) The nonlinear edge theory follows from quantum
hydrodynamics of the bulk of FQH liquid. We defer a
detailed discussion of quantum hydrodynamics in the
bulk to more extended publications. In this Letter we out-
line only basic points and consider only potential flow.

The nonlinear Eq. (3) previously appeared in two
domains of physics. Its classical version has been derived
by Benjamin [5] in 1967 for inner waves in a deep stratified
incompressible fluid with a rapidly changing density or
shear [6]. It is called the Benjamin-Ono equation.

This relation is not accidental: a FQH state is an incom-
pressible quantum fluid with a rapidly changing density
and shear at the boundary layer, Eq. (4), Fig. 2.
The quantum Benjamin-Ono equation (qBO) identical

to (2) and (3) describes the chiral sector of Calogero model
[7,8]. This relation is not accidental also. Both FQH and
Calogero liquids feature excitations with a fractional
charge. One can treat the result of this paper as a proof
of a long anticipated equivalence between Calogero liquid
and FQH Edge states.
The qBO, and therefore edge states, have an intrinsic

relation to a boundary Conformal Field theory. This theory
is situated in the exterior of the droplet. Its central charge
c ¼ 1� 6��1ð�� 1Þ2. Conformal symmetry emerges
with respect to deformations of the boundary of a FQH
droplet. Also, qBO has a natural extension to non-Abelian
FQH states. We will discuss these aspects elsewhere. In
this paper we mention a few major features of qBO [7,8]
and focus on its derivation.
Quantum Benjamin-Ono equation.—The qBO is a

Hamiltonian equation. The dispersion term �r2
xf

H has
the dimension of viscosity but contrary to real viscosity
does not produce dissipation. It gives a nonanalytic cor-
rection to the dispersion of linear waves

@ ð!ðkÞ � c0kÞ ¼ ��kjkj: (6)

A noticeable feature of the qBO is that the ‘‘dissipationless
viscosity’’ � depends only on the filling fraction � and, in
this sense, is universal. Contrary, in classical liquids [5,6]
the coefficient � depends on the equation of state and
is not quantized. This term is similar in origin to the
‘‘Hall viscosity’’ [9], but is not directly related. It is
inherent to FQHE, � vanishes for the IQH.
Quantum BO equation has been studied in connection

with Calogero model in [7,8,10]. We list few major facts.
The equation is integrable despite of being nonlocal. It
features solitons. There are two branches of solitons: one
is ultrasonic, another is subsonic. Quite remarkably, both
carry quantized electron charges. An ultrasonic soliton car-
ries an integer of electron charge q ¼ þe. It is a bump on
the edge—a coherent state of an electron. A subsonic soliton
is a coherent state of a hole—a dent on the edge. It carries
integer of a fractional charge q ¼ ��e of an opposite sign.
Shapes of the elementary solitons are especially simple:

fqðxþc0tÞ¼ q

�

a

a2ðx�vqtÞ2þ1
; q¼ 1; ��: (7)

Velocity of a soliton (relative to the sound) is vq ¼ q��a is

inversely proportional to the magnetic field. It is propor-
tional to its amplitude a and its charge q. The amplitude a >
0 is arbitrary, but the charge is quantized.
Benjamin-Ono equation receives corrections from elec-

trostatic forces and various dissipation sources. However
fractionalized solitons are protected as long as FQH
state exists.

FIG. 2 (color online). Boundary double layer of � ¼ 1
3 state

computed for 200 particles [20]: Left (in decreasing order):
overshoot of the density �, density �I (at � ¼ 1), the dipole
moment ��ðrÞ ¼ R

r y0ð�I � �Þdy0. The value of �j1 ¼ 1��
4� �

0:053 is clearly seen. Right: �� �I illustrates the double
layer (4).
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There two ways to observe fractional solitons. One is to
generate individual solitons by applying a time dependent
voltage protocol eVðtÞ ¼ @c0fqðc0tÞ through a quantum

dot connected to the conductor via a tunnel barrier [11]
and measure a time dependent current at a distance of from
the point contact. Similar measurements have been done in
nanoelectronic devices (see, e.g., [12]).

Alternative way to observe solitons is through the soliton
train. When an rf source creates a large dent of a size L �
‘B in the boundary density which involves a large number
n of electrons, the dent collapses through a shock wave to
oscillatory features which further separate to a stable a
sequence of pulses carried a fraction ��e of an electronic
charge (see,, e.g., [7]). This happens very fast at the time
ð@=��ÞL=ðn‘BÞ � 1–10 ps. Pulses can be seen through the
time dependence of the edge current.

Phenomenological Hamiltonian.—This is the starting
point of the analysis. A space where the Hamiltonian acts
is the result of a projection on the first Landau level
enforced by the condition @!c � ��. It is the set of states
obtained by a deformation of the Laughlin ground state c 0

by holomorphic polynomials. In a radial gauge suitable for
a central-symmetric confining potential coherent states are
characterized by a holomorphic potential V

c V ¼Z�1=2
V e1=@

P
N
i
VðziÞc 0; c 0 ¼��e�

P
N
i
jzij2=4‘2B ; (8)

where � ¼ Q
N
i>jðzi � zjÞ and ZV is a normalization and

we use � ¼ ��1.
A complex potential VðzÞ is analytic at infinity and such

that 4�� ¼ ��V is real. A meaning of � is a density of
‘‘holes’’, or vortices cf. (15). Also a set of permissible
operators is spanned by a product of holomorphic and
antiholomorphic operators. We denoted the averages of
symmetric operators in a given V state as hOiV ¼R
c 	

VOc V

Q
id

2ri.
These states have been studied in [13]. We mention only

an important sum rule elementary followed from the value

of the dilatation operator
P

ihri � ðri þry
i ÞiV ¼ �2N

1

N

X
i

�
r2i
2‘2B

� N�� 1

@
ri � riReV

�
V
¼ 1� �

2
: (9)

We construct the Hamiltonian based on a few defining
properties: (i) Lauglin’s wave function is the ground state;
(ii) action of the Hamiltonian preserves the projected space;
(iii) long waves of a FQH liquid are Galilean invariant;
(iv) on closed manifolds all states are gapped [14].

Under these assumptions the zero Hamiltonian of the
Chern-Simons theory is replaced by the Bernoulli energy
of the chiral flow

H ¼
Z m�

2
v̂y�̂ v̂ d2r: (10)

Here, m� ¼ ��@
� � @

2‘2B
��

is an effective mass obtained from

the value of a gap, �̂ðrÞ ¼ P
i�ðr� riÞ is the density, and

v̂ ¼ v̂x � iv̂y is the velocity.

A subtle point of this Hamiltonian is the definition of the
velocity operator. Velocity is chosen such that it vanishes at
the ground state

i

2@
m�v̂i ¼ @zi �

e

2c
AðziÞ �

X
j�i

�

zi � zj
: (11)

Here A ¼ Ax � iAy is an external e.m. potential, zi ¼
xi þ iyi is the complex coordinate.
Velocity differs from the velocity of individual electrons

but corresponds to the velocity of ‘‘composite particles’’—
electrons with an attached flux converting them to bosons.
This velocity changes slowly in long-wave excited states.
It enters hydrodynamics.
A noticeable feature of the chiral Hamiltonian is a

normal ordering of velocities entered v. It ensures that
Hc 0 ¼ 0.
The Hamiltonian (10) can be viewed as a quantized

version of ‘‘effective’’ Hamiltonians proposed in [15].
Incompressible quantum hydrodynamics.—Quantum

hydrodynamics describes motion of velocity and density
fields. The fields are defined as operators acting on aver-
ages hOiV . In particular, the velocity field is defined
as �ðrÞvðrÞhOiV ¼ hPj�ðr� rjÞvjOiV , where �ðrÞ ¼
h�̂ðrÞiV . In this representation

m�v ¼ 2@zð�� � iVÞ; �� ¼ �i@
�

��
: (12)

In the restricted space (8) operator �� is harmonic, �V is

real; hence, the liquid is incompressible

~r � ~v ¼ 0: (13)

It is customary to describe the incompressible flow in terms
of the stream function. Let us denote ~�� the operator

harmonic conjugated to ��. Then the stream function

(rather operator) reads

~v ¼ ~r
�; m�� ¼ ~�� þ ReV: (14)

Equation (14) gives an interpretation to the deformation
potential V. Its real part is the diagonal part of the stream
function. Diagonal parts of vorticity and energy are

hHiV ¼ 1

2m�

Z
jrVj2�d2r; m�h ~r
 ~viV ¼��V: (15)

Holomorphic fields, potential incompressible flow and
edge states.—In a system without boundaries all modes are
gapped [1,16]. If there is a boundary, gapless edge states
emerge. In this Letter we focus only on edge states, defer-
ring discussion of hydrodynamics of the bulk. For this
purposes it is sufficient to consider only a potential flow
where a stream function is harmonic

~r
 ~v ¼ 0; �� ¼ 0: (16)

Potential flow corresponds to deformations of (8) by ana-
lytic functions inside the domain occupied by the liquid.
All singularities of V are outside of the domain (analytic
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functions do not exist on closed manifolds, so as gapless
modes). It has been shown in [13] that a holomorphic
deformation of Laughlin’s state changes only the shape
of the droplet, leaving the density and the area unchanged.
In the leading 1=N order, the bulk density is uniform
�� ¼ �B=�0. In a radial potential the droplet in the ground

state is a disk with a radius R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N=� ��

p
.

Incompressible potential flow with a free boundary and a
constant density is a standard subject in classical hydro-
dynamics [17]. Its extension to the quantum case is
straightforward. Use the Green formula and the Cauchy-
Riemann condition to express the Hamiltionian only
through the boundary value of the fluid potential

H ¼ m� ��

2

I
�@n�ds; hHiV ¼ ��

2im�

I
�VdV: (17)

The bulk Hamiltonian vanishes. Then the only governing
equation is the kinematic boundary condition [17]

_yþ vxrxyþ vy ¼ 0; (18)

where vx, vy are velocities of the inner layer tangential and

normal to the unperturbed boundary. In the rest of the
Letter we derive the relation between velocity and bound-
ary elevation. The result is

vx ¼ c0 � � ��yðxÞ; vy ¼ �� � yHxx (19)

where we set � ¼ ��@=ð2m�Þ.
We obtain the qBO (3) by substituting (19) into (18) and

fðxÞ ¼ ��yðxÞ.
Chiral constraint.—A relation between potential V,

hence velocity, and the shape of the boundary has been
obtained in [13]. We rederive it invoking Dyson’s argu-
ments [18] and refine the results of [13]. Dyson’s argu-
ments are somewhat heuristic but transparent and short.

Let us express an expectation value hOiV as a path

integral over the density field hOiV ¼
R
O½�̂�e��FV ½�̂�D�̂.

The chiral constraint (also known as a loop equation [13])
is the saddle point condition ensured by a large number of
particles �

�

��
� �

�

��
FV½��

�
O½�� ¼ 0: (20)

The functional FV½�� can be treated as the free energy of
2D-Coulomb plasma. It consists of energy and entropy.
��FV ¼ logjc Vj2 �

R
� log�d2r. The entropy is the

Jacobian of passing from integration over particle coordi-
nates to a path integral over the density field.

In order to find the energy of the plasma we writeP
i;j�i logjri � rjj ¼

P
i;j logjri � rj þ ‘�ijj �

P
i log‘ðriÞ,

where ‘ðrÞ is the mean distance between particles.
Exclusion of ‘‘self-interaction’’ allows us to replace sums
by integrals:

P
j�i logjri � rjj ¼ � 1

2’ðriÞ � log‘ðriÞ,
where’ðrÞ ¼ �2

R
logjr� r0j�d2r is the Coulomb poten-

tial of the plasma. This gives

�FV ¼
Z �

�

2
ð’� �’Þ þ � log‘þ log�� 2

@
ReV

�
�d2r;

(21)

where �’ ¼ �2
R
R
0 logjr� r0j ��d2r0 ¼ �� ��r2 is the po-

tential of a neutralizing uniform background charge ��.
A subtle point of this approach is the value of the mean

distance between particles. Close to the boundary, ‘ enter-
ing (21) is the distance in the direction normal to the
boundary. Since the mean distance along the boundary
is constant�‘B we have ‘B‘� 1=�. In this case the short
distance term and the entropy term sum up to ð�� 1Þ

log�. Then Eq. (20) gives 2���1� ¼ ’� �’�
ð1� �Þ log�.
Unfortunately, Dyson’s arguments miss exponential cor-

rections important at the boundary. Notice that in the case
of the IQHE when � ¼ 1 the term ð�� 1Þ log� vanishes.
The Dyson’s arguments give 2���1� ¼ ’� �’. This
equation treats the density as a step-function. Instead, the
exactly known density at � ¼ 1 is

�I ¼ 1

2
�� erfc

�
yffiffiffi
2

p
‘B

�
� ��

�
�ð�yÞ þ ‘B

y
ffiffiffiffiffiffiffi
2�

p e�y2=2‘2B . . .

�
;

where (� y) is the distance to the boundary.
This failure can be ‘‘repaired’’ by replacing the plasma

Coulomb potential �’ ¼ �� ��r2 of a neutralizing uniform

charge �� in (21) by the potential of the charge �I: ’I¼
�2

R
logjr�r0j�Iðr0Þd2r0 ��� ��r2ð1þOðe�y2=2‘2BÞÞ. Then

2���1� ¼ ’� ’I � ð1� �Þ log�: (22)

This ad hoc procedure reflects a discreteness of particles.
So far we did not assume that the flow is potential. If

the flow is potential the Laplace operator nulls the l.h.s. of
(22). We obtain a Liouville-type equation

�� �I þ �� log� ¼ 0; � ¼ 1� �

4�
: (23)

We wish to have a more satisfactory mathematical justifi-
cation of this equation. To support the Liouville equation
we comment that it can be can be checked against the sum
rule (9), and that its numerical solution obtained by A.
Abanov appears to be undistinguishable from a numerical
ab initio simulation of the Laughlin’s wave function (8)
presented in Fig. 2 [19,20].
Boundary double layer and its dipole moment.—

Equation (23) has a profound consequence. It shows
that the density behavior is singular: on approaching the
boundary the density oscillates and shoots up before
falling down. A detailed structure of the overshoot is
not well understood. However, we know that it is a double
layer and as we see in a moment, only the boundary dipole
moment of the layer enters the edge dynamics. The dipole
moment is easy to compute. The overshoot was observed
numerically in [21] but have not been given any particular
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significance. Independently it has been found analytically
in [13]. The value of the dipole moment (5) follows from the
sum rule (9) and also from the Liouville Eq. (23).

A detailed structure of the layer follows from (23).
Iterations of (23) allow us to conjecture the asymptotic
expansion for the density. In units of ‘B [19,22]

�¼ ��

�
1þe�	2=2

�
ffiffiffiffiffiffiffi
2�

p ð2��	þOð	�1Þ
�
; ‘B	¼y<0: (24)

At ‘B ! 0 the leading term of (24) is a double layer
presented earlier (4).

Transformation of velocities.—Now we are in a position
to compute the velocity in terms of the boundary elevation
to complete the governing Eq. (18). As in (18) we assume
the density moves together with the boundary �ðx; yÞ ¼
�0ðy� yðxÞÞ, where �0ðyÞ is the density of the ground
state, and compute the boundary value of the Coulomb
potential of the plasma ’ entering the chiral constraint (22).
Computing

R
logjr� r0j�0ðy0 � yðx0ÞÞdx0dy0, we shift the

variable y0 ! y0 þ yðx0Þ, subtract �I and expand in yðxÞ. We
obtain

’ðx;yÞ�’0ðy�yðxÞÞ�2
Z
dx0ðyðx0Þ�yðxÞÞ

Z y�y0

jr�r0j2

½�0ðy0Þ��I�dy0 �2� ��yyðxÞ:

The integral over y0 is localized inside the boundary
layer. If we choose y to be on the inner boundary of the
layer the range of jy� y0j � ‘B. We can replace
jr� r0j�2 in the integral by ðx� x0Þ�2 obtaining a trans-
formation law of the stream function under a displacement
of the boundary by yðxÞ (valid for any shape of the
boundary) [23]

�ðx; yÞ ¼ �0ðy� yðxÞÞ� �ð ��y � yðxÞ þ � � yHx Þ: (25)

For a flat boundary �0 ¼ c0y. This prompts (19) and sub-
sequently qBO.

The relation between V and yðxÞ is of interest. It follows
from (25) and (14)

ð��@Þ�1V 0 ¼ ��

4�

Z yðx0Þdx0
z� x0

þ �

2�

Z yðx0Þdx0
ðz� x0Þ3 :

Summing up, the Benjamin-Ono equation (3) and the
current algebra (1) follow from the transformation law
(25), and the value of the dipole moment (5).
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