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We report a theoretical study of the collective optical response of a two-dimensional array of nonlinear

cavities in the impenetrable photon regime under a strong artificial magnetic field. Taking advantage of the

nonequilibrium nature of the photon gas, we propose an experimentally viable all-optical scheme to

generate and detect strongly correlated photon states which are optical analogs of the Laughlin states of

fractional quantum Hall physics.
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In recent years, the hydrodynamic properties of quantum
fluids of light have attracted strong interest from both
theoretical and experimental points of view, with the dem-
onstration of superfluid flow in degenerate quantum gases
of dressed photons (the so-called exciton-polaritons) in
planar semiconductor microcavities [1] and the subsequent
observation of vortices and solitons in the wake of a strong
defect [2]. All these experiments were performed in a
dilute gas regime where a mean-field description based
on a generalized Gross-Pitaevskii equation is accurate
[3,4].

Going beyond this regime requires that the underlying
medium show a sufficiently large optical nonlinearity to
induce strong effective interactions between the photons. A
first step in this direction has been the observation of strong
antibunching in light emission from single-mode cavities
in both the visible [5,6] and microwave domains [7] via the
so-called photon blockade effect. The present experimental
challenge is to scale up the impenetrable photon regime
to arrays of many coupled cavities, for which theoretical
work has anticipated the onset of different kinds of
strongly correlated photon states, from Mott insulators
[8] to Tonks-Girardeau gases in one-dimensional geome-
tries [9,10].

Meanwhile, several proposals have appeared for gener-
ating artificial magnetic fields for neutral quantum parti-
cles. The Berry phase [11] accumulated by an optically
dressed atom while adiabatically moving in space can
be described in terms of an artificial gauge field [12]; the
nucleation of quantized vortices in a dilute Bose-Einstein
condensate under the effect of such a field was observed
in [13]. Many authors have speculated on the possibility
of observing quantum Hall liquid states in strongly inter-
acting atomic gases in free space [14] or optical lattices
[15–17]. Very recently, the extension of this idea to pho-
tons has been theoretically investigated in a number of
configurations, for instance, arrays of coupled optical cav-
ities confining single atoms [18], microwaves in circuit-
QED devices [19], and solid-state photonic devices in the
infrared or visible spectral range [20–22].

The present Letter reports a theoretical study of the
optical response of a coupled cavity system to a coherent
laser field in a regime where impenetrable photons expe-
rience a strong artificial magnetic field. Our theoretical
description is based on a generic model that can be used
to describe a number of different physical systems, ranging
from macroscopic optical cavities containing atoms [5] to
photonic crystal cavities [6] and circuit-QED devices [7].
In contrast to prior work [18], we take full advantage of the
driven-dissipative nature of the photon gas [23] to propose
an all-optical protocol to generate and characterize
strongly correlated photon states which are analogs of the
fractional quantum Hall (FQH) states of electrons in two-
dimensional geometries under a strong magnetic field [27].
The quantum Hall nature of the generated state is assessed
in terms of its overlap with the Laughlin wave function
[28]. We anticipate that detailed information on the micro-
scopic structure of the many-body wave function can be
experimentally extracted from the field quadratures of the
secondary emission from the device.
We consider a two-dimensional square lattice of coupled

cavities under a uniform artificial magnetic field. Each
cavity is assumed to sustain a single photonic mode, to
be coupled to its nearest neighbor by photon tunneling, and
to exhibit a large optical nonlinearity leading to strong on-
site interactions between photons. The isolated system can
then be described by the standard single-band Bose-
Hubbard Hamitonian [10,22],
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where b̂yi , (b̂i) is the bosonic creation (annihilation) opera-
tor for site i and n̂i ¼ b̂yi b̂i is the corresponding number
operator. The effect of the artificial magnetic field is in-
cluded via the tunneling phase ’ij; J is the tunneling

strength between nearest neighbor sites hi; ji, U is the
!on-site interaction energy, and !� is the natural cavity
frequency.
In the noninteracting case U=J ¼ 0, the spectrum of the

isolated system Hamiltonian H0 for an infinite lattice is
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the Hofstadter butterfly [29], which appears as a fractal
structure in the energy versus � ¼ ð2�Þ�1�h’ij plane,

where the loop sum is performed around a plaquette of the
lattice. For a real magnetic fieldB and a lattice spacing a,�
would correspond to the number of magnetic flux quanta
per plaquette, � ¼ Ba2=ðh=eÞ. In the presence of finite on-
site repulsive interactions, for filling � ¼ 1=2, the bosonic
Laughlin wave function turns out to be the almost exact
ground-state wave function in the continuum limit � � 1
[14–16] and to capture the essential features of the ground
state up to a critical value of �� 0:3 for sufficiently strong
interactions U=J * 5 [15].

To accurately describe a photonic system, one has to
account for the finite photon lifetime and for the optical
pump that is used to continuously replenish the photon gas
[10]. A coherent pump can be included in the model

as an additional Hamiltonian term in the form Hdrive ¼P
i½@FiðtÞb̂yi þ H:c:�. Here we restrict our attention to the

simplest case of a monochromatic pump at frequency !p,

that drives all sites with the same amplitude, FiðtÞ ¼
�Fe�i!pt. Photon losses at a rate � are described at the level
of the master equation d�=dt ¼ � i

@
½H0 þHdrive; �� þ

L½�� with a dissipative term in the Lindblad formL½�� ¼
�
P

i½b̂i�b̂yi � ðb̂yi b̂i�þ �b̂yi b̂iÞ=2� [30]. As in previous

work [10], the steady-state density matrix �ss is obtained
from a numerical determination of the stationary point of
the master equation d�=dt ¼ 0. More details are given in
the Supplemental Material [31].

We now present the results of our numerical calculations
for a 4� 4 lattice using a basis of states with total photon
numberN ¼ 0; 1; 2 in the hard-core limitU=J ¼ 1, where
double occupation of a single site is not allowed. Ex-
citation to higher N states is negligible as long as the
pump amplitude is well below saturation �F � �. We
work in the Landau gauge A ¼ ð�By; 0Þ with an effective
magnetic field strength B such that � ¼ 1=4. This choice
corresponds to N� ¼ 4 flux quanta through the whole
lattice and therefore to a filling fraction � ¼ N=N� ¼
1=2 for an N ¼ 2 state. Periodic boundary conditions are
assumed [32].

The first observable we consider is the total number of

photons nT ¼ P
ihb̂yi b̂ii present in the steady state of the

system, a quantity which in many geometries is propor-
tional to the total transmitted intensity. This quantity is
plotted in Fig. 1(a) as a function of the relative pump
frequency �!p ¼ !p �!� for three different values of

the loss rate � and a fixed pump amplitude �F=� ¼ 0:1. The
main feature is a strong peak at �!p=J � �2:83 corre-

sponding to a one-photon transition from the vacuum to the

lowest one-particle eigenstate of H0 at energy @ð!ð1Þ þ
!�Þ: the position of the resonance is at �!p ¼ !ð1Þ. In
addition, on the spectrum for the lowest value of �, we can
notice a much weaker peak at �!p=J � �2:52 corre-

sponding to a two-photon transition from vacuum to a

two-particle eigenstate of H0 of energy @ð!ð2Þ þ 2!�Þ: in
this case, the position of the resonance is given by �!p ¼
!ð2Þ=2 [10].
In order to isolate the two-photon peaks from the much

stronger one-photon background, in Fig. 1(b) we plotted
the ratio P2=P1 where the steady-state probability of hav-
ing N ¼ 1; 2 particles in the system is defined as P1;2 ¼
Tr½�ss�1;2� in terms of the projectors�1;2 onto the one- or

two-particle subspaces: in this way, clear peaks appear at
half the frequency of the lowest and the third lowest N ¼ 2
eigenstates of H0. The second lowest N ¼ 2 eigenstate
ofH0 does not contribute to this spectrum as the matrix
element for the corresponding two-photon transition ap-
pears to be very small for the chosen spatial profile of the
pump.
A common procedure in the theory of the quantum Hall

effect to analyze the physical nature of a state is to
calculate the overlap of the state with an ansatz wave
function, for example, a Laughlin wave function. Here
we extend this approach to a driven-dissipative system:
under a weak pump condition �F � �, the component of

the density matrix on the N ¼ 2 subspace �ð2Þ ¼ �2�ss�2

involves a single pure two-particle state, whose wave func-

tion is proportional to the two-photon amplitude c ij ¼
Tr½�ssb̂ib̂j�, which then plays the role of a two-photon
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FIG. 1 (color online). (a) Expectation value of the total number
of particles. (b) Ratio P2=P1 of the probability of having two
particles to one particle in the steady state. (c) Overlap O with
the optimized Laughlin wave function. All curves in (a)–(c) are
plotted as a function of pump frequency �!p for different values

of the loss rate �=J ¼ 0:002 (blue solid curve), 0.01 (red dashed
curve), and 0.05 (black dash-dotted curve). Pump amplitude is
�F=� ¼ 0:1 for all cases. A 4� 4 lattice with periodic boundary
conditions is considered in the impenetrable photon limit U=J ¼
1. Vertical solid (dashed) lines indicate the position of two-
(one-) photon transitions as predicted by the eigenfrequencies of
H0. The green thin curve peaked at the one-photon transition
(vertical dashed line) in (b) and the almost horizontal green thin
curve in (c) refer to the noninteracting photon case U=J ¼ 0 for
�=J ¼ 0:01.
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wave function. The quantum Hall nature of the two-photon
peaks can then be assessed by calculating the overlap of
c ij with the pair of generalized Laughlin wave functions

�ð1;2Þðzi; zjÞ for our toroidal geometry [33,34], the explicit

form of which is given in the Supplemental Material [31].
The optimized Laughlin wave function is the linear com-

bination of �ð1;2Þ that gives the maximum value O of the
overlap,

O ¼ X
l¼1;2

�P
i;j
jc �

ij�
ðlÞðzi; zjÞj2

P
i;j
jc ijj2

�
: (2)

A plot ofO as a function of �!p is shown in Fig. 1(c). For

the weakest loss rate �=J ¼ 0:002, the overlap is broadly
peaked around the lowest two-photon resonance, with a
peak value as high as 98.9% (as usual, perfect overlap
would correspond to O ¼ 100%) and then decays to zero
as the higher two-photon resonance is approached: this is a
clear signature that the lowest two-photon peak indeed
corresponds to the transition to a two-particle Laughlin
state, while the second peak corresponds to some orthogo-
nal excited state. For a more realistic loss rate �=J ¼ 0:05,
the maximum overlap is somewhat reduced by the reduced
selectivity of the coherent drive and the consequent mixing
with other states; however, its value is still as high as
90.9%. The situation is of course completely different in
the U=J ¼ 0 case of noninteracting photons. In this case,
only the one-particle peak at �!p=J � �2:83 remains

visible in the spectrum [thin curve in Fig. 1(b)] and the
overlap with the Laughlin wave function is dramatically
reduced at all frequencies [thin curve in Fig. 1(c)].

In contrast to standard condensed matter systems, quan-
tum optical techniques provide experimental access to the
overlap O with the Laughlin state [35]. In the infrared or
visible range, the two-photon amplitude c ij can in fact be

measured with standard homodyne detection techniques
[30] by homodyning the secondary emission from sites i
and j with the coherent pump at !p as sketched in Fig. 2.

To obtain the different quadratures XðiÞ
�i

¼ ðb̂ie�i�i þ
b̂yi ei�iÞ=2 of the field emitted by site i, one has simply to
adjust the phase delay �i of the homodyne beam. As
quadrature operators for two different sites (i � j) com-
mute, they can be simultaneously measured and correlated.
The full two-photon amplitude c ij is finally reconstructed

by combining four separate measurements,

hb̂ib̂ji ¼ hXðiÞ
0 XðjÞ

0 i � hXðiÞ
�=2X

ðjÞ
�=2i þ ihXðiÞ

0 XðjÞ
�=2i

þ ihXðiÞ
�=2X

ðjÞ
0 i: (3)

In the microwave domain of circuit-QED systems, the
situation is even simpler as field quadratures can be di-
rectly measured using linear amplifiers [36]. A measure-
ment of the two-photon amplitude c ij provides an intuitive

picture of the complexity of two-photon FQH states.
A numerically simulated image of this quantity (actually,
a cut of c ij for a fixed i ¼ i�) is illustrated in Fig. 2(b) and
compared with the Laughlin wave function; the agreement
is excellent as expected from the high values of the overlap
mentioned previously.
We conclude the Letter by discussing how all the pre-

viously described phenomena are robust against expected
experimental imperfections and are not restricted to small
lattices. Although periodic boundary conditions may be
realized in a photonic system (for instance, by suitably
connecting sites on opposite sides with optical fibers), an
experimentally much less demanding option is to use hard-
wall boundaries. Furthermore, there might be structural
defects leading to a small inhomogeneity in the lattice
potential and interactions between the particles might be
not strong enough to be in the hard-core limit U=J ¼ 1.
Transmission spectra for a more realistic case of 4� 4
lattice with finite U=J ¼ 20 and an energy offset on the
order of � on a few lattice sites are shown in Fig. 3 together
with the corresponding overlap with the optimized
Laughlin wave function for periodic boundary conditions.
In spite of the different hard-wall geometry and the
disturbing effect of disorder and finite interactions, the
overlap O for a pump on resonance with the �!p=J ¼
�2:3120 two-photon transition is as high as �76%. This
fact is intuitively visible in the two-photon amplitude
plotted in Fig. 3(c). Although there are some deviations,
the complex structure of the Laughlin wave function is still
clearly recognizable.
Calculations for larger systems and more particles can

be performed with a more sophisticated Monte Carlo
wave-function technique [37] which is detailed in the
Supplemental Material [31] and is much more time-
consuming. For this reason, we did not calculate the whole
spectrum, but we restricted ourselves to a single value of
the pump frequency, chosen to be on exact three-photon
resonance with the lowest three-particle eigenstate of an
isolated 5� 5 lattice with a gauge field intensity � ¼ 0:24

x
j

y
j

(b)

FIG. 2 (color online). (a) Sketch of the proposed experimental
setup to measure the two-photon amplitude c ij. (b) i ¼ i� cut of

the (normalized) two-photon amplitude c i�j (red thick arrows)

and of the optimized Laughlin wave function �ðzi� ; zjÞ (black
thin arrows). The two functions are almost indistinguishable.
System parameters: �!p=J ¼ �2:8144; �=J ¼ 0:03; �F=� ¼
0:1. x, y axes refer to the zj ¼ xj þ iyj coordinate. Reference

site i� is marked by a circle. For each lattice site, the arrow
indicates the complex amplitude of the wave function.
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so as to give again N=N� ¼ 1=2. For �=J ¼ 0:01, �F=� ¼
0:1, averaging over 500 independent Monte Carlo realiza-
tions yields an overlap of �93% between the three-photon

amplitude c ijk ¼ Tr½�ssb̂ib̂jb̂k� and the Laughlin wave

function, meaning that our all-optical technique is able to
generate also more complex Laughlin states of more than
two particles. Of course c ijk can again be measured with the

same homodyne techniques by combining eight measure-

ments of the form hXðiÞ
�i
XðjÞ
�j
XðkÞ
�k
i (cf. the Supplemental

Material [31]).
In conclusion, we have shown how FQH states of

impenetrable photons can be generated in a small two-
dimensional lattice in a nonequilibrium setting with sub-
stantial losses. A particular FQH state is optically selected
by the frequency of the coherent pump and the microscopic
structure of the wave function can be reconstructed from a
few homodyne measurements on the secondary light emis-
sion. We hope our results will trigger further work on the
intriguing features of FQH physics with photonic systems,
including fractional statistics and topological protection of
quantum states.
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and Jelena Vučković, Nature Phys. 4, 859 (2008); A.
Reinhard, T. Volz, M. Winger, A. Badolato, K. J.
Hennessy, E. L. Hu, and A. Imamoğlu, Nature Photon. 6,
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