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The scattering matrix approach is employed to determine a joint probability density function of

reflection eigenvalues for chaotic cavities coupled to the outside world through both ballistic and tunnel

point contacts. Derived under assumption of broken time-reversal symmetry, this result is further utilized

to (i) calculate the density and correlation functions of reflection eigenvalues, and (ii) analyze fluctuations

properties of the Landauer conductance for the illustrative example of asymmetric chaotic cavity. Further

extensions of the theory are pinpointed.
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Introduction.—At low temperatures and voltages, a
phase coherent charge transfer through quantum chaotic
cavities is known to exhibit a high degree of statistical
universality [1,2]. Even though the transport through an
individual chaotic structure is highly sensitive to its micro-
scopic parameters, the universal statistical laws emerge
upon appropriate ensemble or energy averaging procedure.
The latter efficiently washes out all system-specific fea-
tures provided a charge carrier has stayed in a cavity long
enough to experience diffraction [3,4]. Quantitatively, this
requires the average electron dwell time �D to be in excess
of the Ehrenfest time �E that defines the time scale where
quantum effects set in.

In the extreme limit �D � �E, the statistics of charge
transfer is shaped by the underlying symmetries [1] of a
scattering system (such as the absence or presence of time-
reversal, spin-rotational, and/or particle-hole symmetries).
For this reason, a stochastic approach [5] based on the
random matrix theory [6] (RMT) description [7] of elec-
tron dynamics in a cavity is naturally expected to constitute
an efficient framework for nonperturbative studies of the
universal transport regime. Indeed, a stunning progress was
achieved in the RMTapplications to the transport problems
over the last two decades. Yet, intensive research in the
field [8] left unanswered many basic-level questions. One
of them, regarding the statistics of transmission or reflec-
tion eigenvalues in chaotic cavities coupled to the leads
through the point contacts with tunnel barriers, will be a
focus of this Letter.

Supported by the supersymmery field theoretic tech-
nique [9] as well as by recent semiclassical studies [4],
the RMT approach to quantum transport starts with the
Heidelberg formula for the scattering matrix [10]

S ð"FÞ ¼ 1N � 2i�W yð"F1M �H þ i�WW yÞ�1W

(1)

of the total system comprised by the cavity and the leads.
Here, an M�M random matrix H (of proper symmetry,
M ! 1) models a single electron Hamiltonian while an
M� N deterministic matrix W describes the coupling of

electron states with the Fermi energy "F in the cavity
to those in the leads; N ¼ nL þ nR is the total number
of propagating modes (channels) in the left (nL) and right
(nR) leads. Equation (1) refers to chaotic cavities with
sufficiently large capacitance (small charging energy)
when the electron-electron interaction can be disregarded
[1]. Throughout the paper, only such cavities are
considered.
Landauer’s insight [11] that electronic conduction in

solids can be thought of as a scattering problem makes the
N � N scatteringmatrixSð"FÞ a central player in statistical
analysis of various transport observables. In the physically
motivated M ! 1 scaling limit, its distribution, dictated
solely by the symmetries of the random matrixH , is well
studied for both normal [12] and normal-superconducting
[13] chaotic systems. In the former case, the distribution of
Sð"FÞ is described by the Poisson kernel [12,14]

P�ðSÞ / ½detð1N � �SSyÞdetð1N �S �SyÞ��=2�1��N=2: (2)

Here, � is the Dyson index [6] accommodating system
symmetries: Sð"FÞ is unitary symmetric for � ¼ 1, unitary
for � ¼ 2, and unitary self-dual for � ¼ 4. All relevant
microscopic details of the scattering system are encoded
into a single average scattering matrix

�S¼ ðM�1N ��2W yW ÞðM�1N þ�2W yW Þ�1; (3)

where� denotes themean level spacing at the Fermi level in

the limitM ! 1. The N eigenvalues �̂ ¼ diagðf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �j

q
gÞ

of �S characterize [1] couplings between the cavity and the
leads in terms of tunnel probabilities �j of the jth electron

mode in the leads. The celebrated result Eq. (2), that can be
viewed as a generalization of the three Dyson circular
ensembles [6], was alternatively derived through a phe-
nomenological information-theoretic approach reviewed
in Ref. [15].
Unfortunately, statistical information accommodated in

the Poisson kernel is too detailed to make a nonperturbative
description of transport observables operational. It turns
out, however, that in case of conserving charge transfer
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through normal chaotic structures, it is suffice to know a
probability measure associated with a set T of nonzero
transmission eigenvalues fTj 2 ð0; 1Þg; these are the eigen-
values of the Wishart-type matrix tty, where t is the trans-
mission subblock of the scattering matrix

S ¼ rnL�nL tnL�nR

t0nR�nL
r0nR�nR

 !
: (4)

Owing to this observation, the joint probability density
function P�ðTÞ emerges as the object of primary interest

in the RMT theories of quantum transport.
Surprisingly, our knowledge of the probability measure

P�ðTÞ induced by the Poisson kernel [Eq. (2)] is very

limited, being restricted to chaotic cavities coupled to
external reservoirs via ballistic point contacts [16] (‘‘ideal
leads’’). In this, mathematically simplest case, the unity
tunnel probabilities �j ¼ 1 make the average scattering

matrix �S vanish, giving rise to the uniformly distributed
[17] scattering matrices which otherwise maintain a proper
symmetry [6]. In the RMT language, this implies that
scattering matrices belong to one of the three Dyson
circular ensembles [18].

As was first shown by Baranger and Mello [19], and by
Jalabert, Pichard, and Beenakker [20], the uniformity of
scattering matrix distribution induces a nontrivial joint
probability density function of transmission eigenvalues
fTjg of the form [21]

Pð�Þ
0 ðTÞ / j��

n ðTÞj
Yn
j¼1

T�=2�1þ��=2
j : (5)

Here, � ¼ jnL � nRj is the asymmetry parameter, n ¼
minðnL; nRÞ is the number of nonzero eigenvalues of the
matrix tty, while �nðTÞ is the Vandermonde determinant
�nðTÞ ¼

Q
j<kðTk � TjÞ. Equation (5) is one of the corner-

stones of the RMT approach to quantum transport.
From ballistic to tunnel point contacts.—The restricted

validity of Eq. (5), that holds true for chaotic cavities with
ideal leads, is hardly tolerable both theoretically (an im-
portant piece of the transport theory is missing [22]) and
experimentally (chaotic structures with adjustable point
contacts, including tunable tunnel barriers, can by now
be fabricated [23]). In this Letter, a first systematic foray
is made into a largely unexplored territory of nonideal
couplings. In doing so, we choose (for the sake of
simplicity) to lift a point-contact ballisticity only for
the left lead that is assumed to support nL propagating

modes characterized by a set of tunnel probabilities �̂L ¼
ð�1; . . . ;�nL Þ; the right lead, supporting nR � nL open

channels [24], is kept ideal so that �̂R ¼ ð�nLþ1; . . . ;�nRÞ ¼
1nR�nL . Assuming that the time-reversal symmetry is broken

(� ¼ 2), we shall show that the joint probability density
function Pð�̂Lj0ÞðRÞ of reflection eigenvalues fRj ¼ 1� Tjg
equals [26]

Pð�̂Lj0ÞðR1; . . . ; RnLÞ ¼ cnL;nR
detNð1nL � �̂2

LÞ
�nLð�̂2

LÞ
�nLðRÞdetðj;kÞ2ð1;nLÞ½2F1ðnR þ 1; nR þ 1; 1;�2

jRkÞ�
YnL
j¼1

ð1� RjÞ�: (6)

Here, �̂2
L ¼ 1nL � �̂L is a set of nL coupling parameters

characterizing nonideality of the left lead in terms of
associated tunnel probabilities, N ¼ nL þ nR is the total
number of open channels in both leads, cnL;nR is the inverse
normalization constant,

cnL;nR ¼ ðnL þ nRÞ!
nL!nR!

YnL
j¼1

ðnR!Þ2
ðnR þ jÞ!ðnR � jÞ! ; (7)

while pFq is the Gauss hypergeometric function. The
(biorthogonal [27]) ensemble of reflection eigenvalues
Eq. (6) is our first main result [28]. Before outlining its
derivation, let us discuss the implications of Eq. (6) for a
nonperturbative statistical description of both spectral and
transport observables in quantum chaotic cavities.

Statistics of reflection eigenvalues.—The first immediate
consequence of Eq. (6) is the determinant structure of the
p-point correlation function of reflection eigenvalues:

�ðnL;nRÞðR1; . . . ; RpÞ ¼ detðj;kÞ2ð1;pÞ½KðnL;nRÞðRj; RkÞ�: (8)

Defined in a standard manner [6], it is entirely determined
by the two-point scalar kernel KðnL;nRÞðR; R0Þ, that can

straightforwardly be calculated [25] by applying the ideas
exposed in Ref. [27]. In terms of the ‘‘moment function’’

Mð�Þ
k ð�2Þ ¼ X�

‘¼0

ð�1Þ‘ �
‘

� �
Mð0Þ

kþ‘ð�2Þ; (9)

where Mð0Þ
k ð�2Þ¼k�1

3F2ðnRþ1;nRþ1;k;1;kþ1;�2Þ,
the scalar kernel is given by a finite sum:

KðnL;nRÞðR;R0Þ ¼ nL!cnL;nR
detnLþnRð1nL � �̂2

LÞ
�nLð�̂2

LÞ
½ð1�RÞð1�R0Þ��=2

�XnL
j¼1

2F1ðnRþ 1;nRþ 1;1;�2
jRÞdet½½Mð�Þ

k ð�2
‘Þ�‘¼1;���;j�1; ðR0Þk�1; ½Mð�Þ

k ð�2
‘Þ�‘¼jþ1;���;nL�: (10)
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Here, k 2 ð1; nLÞ counts the rows of an nL � nL matrix
under the sign of determinant. Equations (8) and (10)
represent our second main result.

Distribution of Landauer conductance.—Although the
central result of this Letter, Eq. (6), allows us to address
the problem of conductance fluctuations in full generality,
the most explicit formulas can be obtained for the illustra-
tive example of an asymmetric cavity whose left (nonideal)
lead supports a single propagating mode (nL ¼ 1). For
such a setup, a probability density fð1;nRÞðg; �Þ of the

Landauer conductance is proportional to the mean density
Kð1;nRÞðR; RÞ of reflection eigenvalues taken at R ¼ 1� g.

Materializing this observation with the help of Eq. (10), we
derive [29]:

fð1;nRÞðg; �Þ ¼ fð1;nRÞðg; 1Þ�nRþ1

� 2F1ðnR þ 1; nR þ 1; 1; ð1� �Þð1� gÞÞ:
(11)

Here, � is the tunnel probability of the left point contact,
while fð1;nRÞðg; 1Þ ¼ nRg

nR�1 describes the conductance

density when the left point contact is ballistic.
The probability density of Landauer conductance

Eq. (11) shows an unusually rich behavior (see Fig. 1).
First, it exhibits a pronounced maximum whose position
g�, for a generic value of the tunnel probability �, depends
on the number (nR) of propagating modes in the ideal lead.
Second, numerical analysis of Eq. (11) reveals existence of
a ‘‘critical’’ value (�0) of the tunnel probability: for
�< �0, increase of nR makes the maximum position
move from left to right until it approaches its saturated
location g� ¼ �; on the contrary, for �> �0, as nR

increases, position of the maximum moves in the opposite
direction eventually reaching g� ¼ �.
To describe this effect analytically, one has to seek an

explicit functional form of g�ð�; nRÞ for arbitrary � and nR,
which appears to be an impossible task. However, some
progress can be made in the large-nR limit, when a 1=nR
expansion can be developed. A somewhat cumbersome
calculation [25] based on the asymptotic analysis of the
hypergeometric function in Eq. (11) brings out the remark-
able formula

g�ð�; nRÞ ¼ �

�
1þ 7

2nR

�
�� 6

7

�
þOðn�2

R

��
; (12)

suggesting that the critical value �0 of the tunnel proba-
bility equals �0 ¼ 6=7. This prediction is unequivocally
supported by numerics based on the exact Eq. (11), see
Fig. 2. We believe that experimental testing of the ‘‘6=7’’
effect may be feasible within the current limits of nano-
technology [30].
Finally, we mention that a calculation of fðnL;nRÞðg; �Þ

becomes increasingly complicated for nL > 1. This diffi-
culty, however, can be circumvented by focusing on the
moment generating function [31] of the Landauer
conductance, that can be related (under certain assump-
tions) to solutions of the two-dimensional Toda lattice
equation [25].
Sketch of the derivation.—Having discussed a few (out

of potentially many) implications of the joint probability
density of reflection eigenvalues in chaotic cavities probed
via both ballistic and tunnel point contacts [Eq. (6)],
let us outline its derivation. The � ¼ 2 Poisson kernel

Eq. (2) with the average scattering matrix �S set to [32] �S ¼
diagð�̂L; 0� 1nRÞ and a polar-decomposed [14,21] unitary

scattering matrix S,

FIG. 1. Probability density function fð1;nRÞðg; �Þ for Landauer
conductance plotted for nR ¼ 5 and various tunnel probabilities:
� ¼ 0:99 (solid line), � ¼ 0:8 (long-dashed line), � ¼ 0:6
(dashed line), � ¼ 0:4 (dotted line), and � ¼ 0:2 (dotted-dashed
line). For the ideal point contact (� ¼ 1), the curve is a monoto-
nous function of g reaching its maximum at g� ¼ 1. Decrease of
the tunnel probability leads to development of a well-
pronounced maximum. In the large-nR limit, it is positioned at
g� ¼ �, see Eq. (12).

FIG. 2. Unnormalized conductance ‘‘distribution’’
n�1
R fð1;nRÞðg; �0Þ plotted for the critical tunnel probability �0 ¼

6=7 and various numbers of propagating modes nR in the ideal
lead: nR ¼ 10 (solid line), nR ¼ 20 (long-dashed line), nR ¼ 30
(dashed line), nR ¼ 50 (dotted line), and nR ¼ 100 (dotted-
dashed line). Position of the maximum is almost ‘‘frozen,’’
depending very weakly on nR [see Eq. (12)].
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S ¼ u1 0
0 v1

� �
L̂ð�Þ u2 0

0 v2

� �
(13)

is our starting point. Here,

L̂ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1nL � ��T

q
i�

i�T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1nR � �T�

q
0
B@

1
CA; (14)

the matrix � is an nL � nR rectangular diagonal matrix
such that��T ¼ diagðT1; . . . ; TnLÞ if nL � nR, and��

T ¼
diagðT1; . . . ; TnR ; 0� 1nL�nRÞ otherwise; the matrices uj
and vj are unitary matrices of the size nL�nL and

nR�nR, respectively. Restricting ourselves to a structur-
ally more transparent case [24] nL � nR, we notice that the
polar decomposition induces the relation

d�ðSÞ ¼P0ð1nL �RÞYnL
j¼1

dRj

Y2
�¼1

d�ðu�Þd�ðv�Þ; (15)

where P0ð1nL � RÞ ¼ P0ðTÞ is the joint probability den-

sity function of transmission eigenvalues at � ¼ 2 in case
of ideal leads [Eq. (6)], and d� is the invariant Haar
measure on the unitary group.

Substituting Eqs. (13) and (14) into Eq. (2) taken at
�¼ 2, and considering the elementary volumes identity
Eq. (15), we conclude that the joint probability density
function of reflection eigenvalues in the nonideal case
admits the representation

Pð�̂Lj0ÞðRÞ / detNð1nL � �̂2
LÞP0ð1nL �RÞ

Z
UðnLÞ

d�ðUÞ

�
Z
UðnLÞ

d�ðVÞdet�Nð1nL � �̂LU%̂V
yÞ

� det�Nð1nL � V%̂Uy�̂LÞ; (16)

where the notation %̂ stands for %̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1nL � ��T

q
¼

diagðR1=2
1 ; . . . ; R1=2

nL Þ. Notice, that for any finite �̂L, the

UðnLÞ � UðnLÞ group integrals in Eq. (16) effectively
modify the interaction between reflection eigenvalues,
which is no longer logarithmic [see Eq. (5)].

The group integrals in Eq. (16) can be evaluated by
employing the technique of Schur functions [33] and the
theory of hypergeometric functions of matrix argument
[34,35]. (An alternative derivation, based on the theory of
� functions of matrix argument, was reported in Ref. [36].)
Leaving details of our calculation for a separate publica-
tion [25], we state the final result:

detðj;kÞ2ð1;nLÞ½2F1ðnR þ 1; nR þ 1; 1;�2
jRkÞ�

�nLð�̂2
LÞ�nLðRÞ

: (17)

Combining the last two equations together, we reproduce
the joint probability density function of reflection eigen-
values announced in Eq. (6).

Summary.—In this Letter, we have outlined an RMT
approach to the problem of universal quantum transport
in chaotic cavities probed through both ballistic and tunnel
point contacts. While our central result Eq. (6) marks quite
progress in equipping the field with nonperturbative calcu-
lational tools, certainly more efforts are required to bring
the theory to its culminating point: (i) relaxing a point-
contact ballisticity for the second lead, (ii) extending the
formalism to other Dyson-Altland-Zirnbauer symmetry
classes [13,37], and (iii) studying integrable aspects of
the theory, much in line with Ref. [31], is just a partial
list of related challenging problems whose solution is very
much called for.
This work was supported by the Israel Science

Foundation through the Grant No 414/08.
Note added in proof.—Recently, we have learned about

the paper by Y.V. Fyodorov [38] who studied a ‘‘probabil-
ity of no-return’’ in quantum chaotic and disordered sys-
tems. In a certain limit, this probability can be reinterpreted
as the Landauer conductance distribution fð1;nRÞðg; �Þ
given by Eq. (11) of this Letter. We have explicitly verified
that both results are equivalent to each other.
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