Experimental Evidence of Cubic Rashba Effect in an Inversion-Symmetric Oxide

H. Nakamura,^{1,3} T. Koga,² and T. Kimura¹

¹Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

²Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University,

Hokkaido 060-0814, Japan

³PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan

(Received 19 December 2011; published 14 May 2012)

We present evidence of cubic Rashba spin splitting in a quasi-two-dimensional electron gas formed at a surface of (001) SrTiO₃ single crystal from the weak localization or antilocalization (WAL) analysis of the low-temperature magnetoresistance. Our WAL data were well fitted by the model assuming $m_j = \pm 3/2$ for the spin-split pair, in which 2π rotation of the electron wave vector \mathbf{k}_{\parallel} in the k_x - k_y plane accompanies 6π rotation of the spin quantization axis. This finding pertains to the *p* symmetry of the t_{2g} electronic band derived from *d* electrons in SrTiO₃, which provides insights into the surface electronic state of (001) SrTiO₃.

DOI: 10.1103/PhysRevLett.108.206601

PACS numbers: 72.25.Dc, 72.25.Rb, 73.20.Fz, 73.61.Le

The Rashba effect is a manifestation of spin-orbit interaction (SOI) in solids, where spin degeneracy associated with the spatial inversion symmetry is lifted due to a symmetry-breaking electric field normal to the heterointerface [1]. In general, the Hamiltonian of the spin-orbit interaction is given by $(\nabla V \times \mathbf{p}) \cdot \boldsymbol{\sigma}$, and for the perpendicular electric field $\nabla V = (0, 0, E_z)$, results in a conventional k-linear Rashba effect, where \boldsymbol{p} is an electron's momentum, and $\boldsymbol{\sigma}$ is the Pauli spin matrices. The lack of inversion symmetry in an underlying bulk also leads to a spin splitting called the Dresselhaus SOI. The nature of Rashba and Dresselhaus SOI, such as the k dependence of spin splitting energy, has been studied extensively [2–12].

The conduction band of SrTiO₃ originates from Ti 3d orbitals, which exhibit outstanding electronic properties such as an interface superconductivity and magnetism [13–16]. Because of the crystal field, three spin-degenerate t_{2g} bands (yz, zx, xy-like states) form the bottom of the conduction band [17,18]. An atomic $l \cdot s$ -coupling causes the splitting of t_{2g} states (~ 17 meV in Ref. [19]; also see Ref. [18]). Thus, the lowest energy states for bulk SrTiO₃ consist of fourfold degenerate bands, which correspond to total angular momentum J = 3/2 ($m_i = \pm 3/2$ and $\pm 1/2$) states in atoms. Recent studies based on density-functional theory [20] and photoemission experiments [21] suggest that the quantum confinement lifts degeneracy of these bands at k = 0, and that the lowest energy state has an xy-like character. The xy state has a dominant coupling to the $m_i = \pm 3/2$ state in an angular momentum basis [22].

The Rashba spin splitting in $m_j = \pm 3/2$ bands is described by the effective cubic-Rashba Hamiltonian [2,23]

$$H_{R3} = \beta E_z i (k_-^3 \sigma_+ - k_+^3 \sigma_-). \tag{1}$$

Here, $\sigma_{\pm} = 1/2(\sigma_x \pm i\sigma_y)$, σ_x and σ_y denote Pauli spin matrices, $k_{\pm} = k_x \pm ik_y$, and k_x , k_y are the components of an in-plane wave vector \mathbf{k}_{\parallel} [2,23]. A prerequisite for the

spin splitting in $m_j = \pm 3/2$ bands is the off-diagonal coupling between $m_j = \pm 3/2$ and $m_j = \pm 1/2$ bands [2,23] in the scheme of envelope function approximation. This coupling is induced by an inversion breaking electric field in a quantum well or just by the presence of an interface [2,23]. For GaAs, where the cubic-Rashba effect has been studied previously [2,8,9,23], the bulk inversion asymmetry, which causes off-diagonal terms in a Kane model, also gives rise to *k*-cubic spin splitting (cubic Dresselhaus term) [2]. In contrast, bulk SrTiO₃ is inversion symmetric and no Dresselhaus terms occur, which is a great advantage for the study of the cubic-Rashba effect. By calculating the spin expectation value using the eigenfunctions for Eq. (1) (shown explicitly in Ref. [24]), we obtain the following effective magnetic field Ω_{R3} :

$$\mathbf{\Omega}_{R3}(\mathbf{k}_{\parallel}) = |\mathbf{\Omega}_{R3}| (\pm \sin 3\theta, \mp \cos 3\theta), \qquad (2)$$

where θ is an angle \mathbf{k}_{\parallel} forms with the k_x axis, and the \pm signs correspond to the two spin directions. Thus, Ω_{R3} rotates within the *k* plane 3 times as many times as the conventional Rashba effect in which $\Omega_{R1}(k_{\parallel}) = |\Omega_{R1}|(\pm \sin\theta, \mp \cos\theta)$ [Fig. 4(a)].

In this Letter, we study the Rashba effect in top-gated SrTiO₃ by weak localization or antilocalization (WAL) analysis of the magnetoresistance (MR). We report the observation of a large WAL in an electron accumulation layer of SrTiO₃. It is shown that the WAL data cannot be fitted by the *k*-linear Rashba splitting model, but can be fitted perfectly by the k^3 spin splitting model. This indicates that the spin splitting of $m_j = \pm 3/2$ bands as discussed above is indeed taking place in SrTiO₃. The previous reports on the successful fitting of WAL in LaAlO₃/SrTiO₃ interfaces [25,26] by Maekawa-Fukuyama theory [27], which assumes Elliot-Yafet spin relaxation and does not include the *k*-dependent Rashba terms, may be attributed to the mathematical identity [5] of

the Hikami-Larkin-Nagaoka model [28] (a simpler version of Maekawa-Fukuyama theory) with the *k*-cubic spin splitting model [29].

Field-effect transistors (FETs) were fabricated on the (100) face of $SrTiO_3$ single crystals using parylene as a gate insulator [30]. We have adopted a bilayer (Al/Zn) source-drain contact [31] as well as a Hall-bar shaped gate contact in the present devices [Fig. 1(a)]. We have fabricated three devices with different parylene thicknesses: 0.43 μ m (STO-A), 0.40 μ m (STO-B), and 0.36 μ m (STO-C). STO-A and -B were fabricated on as-received SrTiO₃ single crystals grown by a vendor (Furuuchi Corp.). For STO-C, the surface etching of the substrate was performed prior to the FET fabrication using buffered hydrofluoric acid (0.1 wt % HF). Temperature and magnetic field B were controlled by a physical property measurement system (Quantum Design). Resistivity and Hall measurements were carried out by conventional low-frequency lock-in technique (5.7–13 Hz) with a current of 0.5–1 μ A.

In Figs. 1(b)–1(d), we show transport properties of SrTiO₃-FETs at 2 K. As seen in the sheet resistivity R_{xx} as a function of an applied electric field to the top gate E_G [Fig. 1(b)], an electron gas at the SrTiO₃ accumulation layer is successfully tuned by E_G . Measured sheet carrier density n_s , estimated by the Hall measurement [Fig. 1(d)], covers the range $2-8 \times 10^{12}$ cm⁻², where n_s increases monotonically with E_G [Fig. 1(c)]. The corresponding Hall mobility is in

FIG. 1 (color online). (a) Photograph of a SrTiO₃ FET. Carriers are accumulated beneath the Hall-bar shaped gate electrode (Au). The Parylene gate insulator is homogeneously deposited within the view of this photograph and cannot be seen. (b) Sheet resistivity as a function of E_G at 2 K. (c) Hall carrier density vs E_G at 2 K showing the monotonic increase of n_s with E_G . (d) The Hall resistance $-R_{xy}$ vs *B* for STO-*A* at 2 K.

the range from ~500 to ~2300 cm²/V s and also increases monotonically with E_G .

Figure 2(a) shows a raw MR curve taken at 2 K. The experimental MR curve (open circles) shows a clear structure around B = 0 T, which we attribute to weak antilocalization [27,28,32]. The broader positive MR proportional to B^2 is due to the classical Lorentz force. By subtracting the B^2 background from the magnetoconductance plot and then shifting the obtained conductance difference to the origin, we obtained a weak localization or antilocalization correction to the conductivity ($\Delta \sigma$) as shown in Fig. 2(b). In the following part of the manuscript, we concentrate on $\Delta \sigma$.

The WAL data were fitted using a theoretical model devised by Iordanskii, Lyanda-Geller, and Pikus (ILP theory) [5,32]. The theory incorporates *k*-dependent spin-precession vector $\Omega_1(\mathbf{k}_{\parallel}) = |\Omega_1|(\sin\theta, -\cos\theta)$ and $\Omega_3(k_{\parallel}) = |\Omega_3|(\sin3\theta, -\cos3\theta)$ [33]. The theory is applicable to a diffusive regime, i.e., $B < B_{tr} = \hbar/2el_m^2$, where B_{tr} is the transport field characterizing elastic scattering of electrons, \hbar is the Planck's constant divided by 2π , *e* is the electron charge, and l_m is the mean free path. We thus limited our fitting to $B < B_{tr}$ (B_{tr} ranged from 0.05 to 1.8 T

FIG. 2 (color online). (a) Magnetoresistance data (open circles) of STO-*B* at $E_G = 4.63$ MV/cm and the fit to B^2 background (dashed line). (b) Conductance correction $\Delta \sigma$ in unit of $e^2/\pi h$ (*e* is the unit charge and *h* is the Planck's constant) due to weak antilocalization derived by subtracting the B^2 background. (c) Theoretical fits given by the Ω_1 -only and the Ω_3 -only conditions (dashed and solid curves, respectively) within the ILP theory [32] to the experimental data $\Delta \sigma$ (open circles) of STO-*B* at $E_G = 4.38$ MV/cm. Simplified diagrams of Ω_1 and Ω_3 are also shown. The Ω_3 model perfectly reproduces $\Delta \sigma$.

Decemptors used for the k subje II D fitting (P

TABLE 1. Tatameters used for the k -cubic LL1 multip $(B_{SO1} = 0)$.											
$E_G(MV/cm)$	STO-A			STO-B			STO-C				
	4.44	4.63	4.79	4.38	4.63	4.88	4.56	4.69	4.83	4.97	5.11
$B_{\phi}(\mathrm{mT})$	13.6	11.4	10.1	13.0	10.0	10.1	19.0	14.7	10.2	10.0	8.02
$B_{SO3}(mT)$	21	26	31	34	44	49	22	24	24	26	9

in the present system). In Fig. 2(c), we compare an experimental MR curve with models which assume either Ω_1 -only $(m_i = \pm 1/2)$ or the Ω_3 -only $(m_i = \pm 3/2)$ condition. Each model was obtained by excluding the irrelevant terms from the general expression [Eq. (13) of Ref. [32]] [34]. In this condition, the fitting parameters are characteristic magnetic fields for the phase coherence $B_{\phi} = \hbar/4eD\tau_{\phi}$ and the spin-orbit coupling $B_{\rm SOn} =$ $\frac{\hbar}{4eD}2\Omega_n^2\tau_n$, where the index *n* takes 1 or 3, *D* is the diffusion constant, Ω_n is $|\Omega_n|$, τ_n is the scattering time defined as $1/\tau_n = \int (1 - \cos n\varphi) W(\varphi) d\varphi$, and $W(\phi)$ is the probability of scattering by an angle φ . It is noted that au_1 is identically equal to au_{tr} . In what follows, the condition for an isotropic scattering ($\tau_3 = \tau_1$) is used for simplicity [36]. As can be seen from Fig. 2(c), the Ω_3 -only model reproduces the experimental data almost perfectly, whereas they deviate from the Ω_1 -only model especially around the minimum in the $\Delta \sigma$ -B plot. On the other hand, both models give good fits for the low-B part of the magnetoconductance, because the sharpness of the fitting curves around B = 0 is determined mainly by B_{ϕ} [37]. These observations demonstrate that the k-linear model is not applicable, but the k-cubic-Rashba model is perfectly consistent with the experimental magnetoconductance. The dominance of the cubic-Rashba term is most strictly confirmed for $n_s = 2.4-4.7 \times 10^{12} \text{ cm}^{-2}$. The relatively large $B_{\rm tr}$ in this n_s range enabled the fitting of the $\Delta \sigma$ -B plot to larger magnetic fields, which allowed us to clearly distinguish the outcomes between the linear and the cubic model fittings. The values of B_{ϕ} and B_{SO3} used for the *k*-cubic fitting are summarized in Table I.

TADIEI

Recent studies on the interface electron gas in SrTiO₃ have suggested that there exists more than one type of carrier [20,21,38]. The background MR proportional to B^2 in our system may also originate from two carriers with different mobilities, though the nonlinearity in the Hall effect that is expected in such a condition is extremely small in the present case. In terms of localization, if those carriers with different k and τ_{tr} both contribute to the localization significantly, more complicated magnetoconductance $\Delta \sigma$ should be observed [39]. The absence of such an effect in our system suggests that only one type of carrier contributes dominantly to $\Delta \sigma$. We assign the high-mobility carriers at the bottom of the conduction band, which are more strongly confined at the interface. as the source of $\Delta \sigma$. This assignment is consistent with recent studies, where the carrier effective mass is small (large) in the in-plane (out-of-plane) direction for the lowest band confined in $SrTiO_3$ [20,21]. A schematic band diagram incorporating spin splittings is shown in Fig. 4(b).

-0

Carrier density dependence of spin-precession length $(L_{\rm SO})$ and phase coherence length (L_{ϕ}) obtained by fitting to the Ω_3 -only model is shown in Fig. 3(d). The relationship $B = \hbar/4eL^2$ was used to derive the length scales from the characteristic magnetic fields. $L_{\rm SO}$ monotonically decreases with increasing n_s (or E_G), and ranges from 88 to 58 nm. L_{ϕ} increases monotonically with n_s (93–140 nm). These trends are qualitatively similar to those recently reported in KTaO₃-FETs, although $L_{\rm SO}$ in SrTiO₃ is notably longer than that in KTaO₃ [40]. The shorter $L_{\rm SO}$ probably reflects the stronger atomic spin-orbit coupling in KTaO₃.

To further confirm that the *k*-dependent spin splitting is actually happening, we clarify the spin-precession mechanism as follows. When *k*-dependent band splitting

FIG. 3 (color online). Experimental $\Delta\sigma$ (closed symbols) and theoretical fit by the Ω_3 -only condition in the ILP theory (solid curves) for (a) STO-A, (b) -B, and (c) -C, respectively. (d) Spin-precession length vs sheet carrier density n_s . The inset shows the phase coherence length vs n_s . (e) Spin-precession time (open symbols) and momentum scattering time (closed symbols) as a function of n_s . The inset shows τ_{SO} vs τ_{tr} for nearly constant n_s $(n_1 \sim 3.5 \times 10^{12} \text{ and } n_2 \sim 4.1 \times 10^{12} \text{ cm}^{-2})$, ruling out the Elliot-Yafet mechanism for both conditions (see text).

FIG. 4 (color online). (a) Schematic spin configuration for the cubic-Rashba effect [Eq. (2)]. The spin quantization axis rotates 3θ as **k** rotates θ around the Fermi circles, in contrast to the linear Rashba effect. (b) Energy diagram of the conduction band (CB) bottom of gated-SrTiO₃ as a function of an in-plane wave vector (k_{\parallel}). The band with a small effective mass forms two spin-split bands (light and dark blue curves) with energies $E = \hbar^2 k^2 / 2m^* \pm \alpha_3 k^3$. The approximate position of the Fermi level E_F is shown by a dashed horizontal line. (c) Deduced values for the coefficient α_3 for the cubic-Rashba effect as a function of n_s . The inset shows spin splitting energy Δ as a function of n_s . 2 Δ corresponds to the difference in the energy of the two spin-split bands at E_F .

is present, spin relaxation is described by the Dyakonov-Perel mechanism, with $\tau_{\rm SO} \propto \Delta^2/\tau_{\rm tr}$ [41], where Δ is the spin splitting energy. On the other hand, if the spin relaxation is brought about by spin-flip scattering, i.e., the Elliot-Yafet mechanism, $\tau_{\rm SO} \propto \tau_{\rm tr}/n_s^2$ is the relevant result for a degenerate system [41]. Although it is not straightforward to unambiguously confirm the Dyakonov-Perel mechanism in our system, the Elliot-Yafet mechanism can be excluded as we describe below. Figure 3(e) gives τ_{SO} and τ_{tr} plotted against n_s ; τ_{tr} is estimated from the measured Hall mobility assuming $m^* = 1.5$ [42], whereas τ_{SO} was derived using relations $L_{\rm SO} = \sqrt{D\tau_{\rm SO}}, D = \frac{1}{2}v_F^2\tau_{\rm tr}, v_F =$ $\hbar k_F/m^*$, and $k_F = \sqrt{2\pi n_s}$, where v_F is the Fermi velocity and k_F is the Fermi wave vector. In the inset of Fig. 3(e), we extract the relation between $au_{
m SO}$ and $au_{
m tr}$ at nearly constant values of n_s $(n_1 \sim 3.5 \times 10^{12} \text{ and } n_2 \sim 4.1 \times 10^{12} \text{ and } n_2 \sim 1$ 10^{12} cm^{-2}) using data points from different devices. Although at constant n_s the relation $\tau_{SO} \propto \tau_{tr}$ is expected for the Elliot-Yafet mechanism, τ_{SO} decreases with increasing τ_{tr} [inset of Fig. 3(e)], ruling out the Elliot-Yafet mechanism.

Taking into account the bulk inversion symmetry of $SrTiO_3$ [17], the consistency between the experiment and the Ω_3 -only condition of the ILP theory suggests the

occurrence of the cubic-Rashba effect. We show the spin splitting energy Δ estimated from $\Delta = \hbar |\Omega_3|$ in the inset of Fig. 4(c). The spin splitting energy is 0.1–0.3 meV. To obtain the coefficient for the cubic-Rashba effect, we assumed the relation $\hbar |\Omega_3| = \alpha_3 k^3$ [2,8,23]. The value of α_3 thus calculated is shown in Fig. 4(c). We find a systematic trend in α_3 in relation to n_s .

In the light of the present finding, it would be interesting to study other spin related phenomena, such as the spin Hall effect [43,44], in SrTiO₃. Notably, an enhancement of the spin Hall conductivity for the cubic-Rashba Hamiltonian has been predicted [24]. On the other hand, the intrinsic spin Hall effect originally derived for a bulk GaAs hole system [43] is based on a magnetic-field-like gauge curvature, defined in a momentum space, which radiates from the Γ point (where $m_j = \pm 3/2$ and $\pm 1/2$ bands are degenerate) and shifts the motion of carriers from an electric field direction. In gated SrTiO₃, the degeneracy at the Γ point is removed but other singular points, i.e., the crossing of $m_j = \pm 3/2$ and $\pm 1/2$ bands, can occur. Precise tuning of the Fermi energy to such points may raise intriguing possibility for the spin Hall physics.

In conclusion, we have investigated a spin-orbit coupling in gated $SrTiO_3$, in which inversion symmetry is preserved in its bulk form. By analyzing an antilocalization effect in magnetoresistance, we observed the distinct configuration of a spin-precession vector in a *k* plane based on the *k*-cubic-Rashba effect compared to the linear Rashba effect. The unique configuration of spin-precession vector as well as the absence of the Dresselhaus term in $SrTiO_3$ may be valuable in designing future spin devices.

- [1] Y.A. Bychkov and E.I. Rashba, J. Phys. C **17**, 6039 (1984).
- [2] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003).
- [3] S. D. Ganichev et al., Phys. Rev. Lett. 92, 256601 (2004).
- [4] L. Meier, G. Salis, I. Shorubalko, E. Gini, S. Schön, and K. Ensslin, Nature Phys. 3, 650 (2007).
- [5] W. Knap et al., Phys. Rev. B 53, 3912 (1996).
- [6] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev. Lett. 89, 046801 (2002).
- [7] J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev. Lett. **90**, 076807 (2003).
- [8] R. Winkler, Phys. Rev. B 62, 4245 (2000).
- [9] G. M. Minkov, A. A. Sherstobitov, A. V. Germanenko, O.E. Rut, V. A. Larionova, and B. N. Zvonkov, Phys. Rev. B 71, 165312 (2005).
- [10] S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, and T. Koga, Phys. Rev. B 83, 115309 (2011).
- [11] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).
- [12] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C, Zhang, S. Mack, and D. D. Awschalom, Nature (London) 458, 610 (2009).

- [13] A. Ohtomo and H. Y. Hwang, Nature (London) 427, 423 (2004).
- [14] N. Reyren *et al.*, Science **317**, 1196 (2007).
- [15] A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nature Mater. 6, 493 (2007).
- [16] K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mater. 7, 855 (2008).
- [17] L.F. Matthheis, Phys. Rev. B 6, 4718 (1972).
- [18] R. Bistritzer, G. Khalsa, and A. H. MacDonald, Phys. Rev. B 83, 115114 (2011).
- [19] H. Uwe, T. Sakudo, and H. Yamaguchi, Jpn. J. Appl. Phys. 24, Suppl. 24-2, 519 (1985).
- [20] Z. S. Popovic, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101, 256801 (2008).
- [21] A.F. Santander-Syro *et al.*, Nature (London) **469**, 189 (2011).
- [22] On the other hand, the *xy* state (corresponds to *z*-like state in *p* orbital) has no coupling coefficients to $m_j = \pm 1/2$ states [M. S. Dresselhaus *et al.*, *Group Theory* (Springer, Berlin, 2008), p. 525, Table D.6].
- [23] L.G. Gerchikov and A.V. Subashiev, Sov. Phys. Semicond. 26, 73 (1992).
- [24] J. Schliemann and D. Loss, Phys. Rev. B 71, 085308 (2005).
- [25] M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010).
- [26] A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).
- [27] S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 50, 2516 (1981).
- [28] S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
- [29] We neglect the effect of Zeeman splitting considered in Ref. [26].
- [30] H. Nakamura, H. Takagi, I.H. Inoue, Y. Takahashi, T. Hasegawa, and Y. Tokura, Appl. Phys. Lett. 89, 133504 (2006).
- [31] D. Sekiya, H. Nakamura, and T. Kimura, Appl. Phys. Express 4, 064103 (2011).

- [32] S. V. Iordanskii, Y. B. Lyanda-Geller, and G. E. Pikus, JETP Lett. 60, 206 (1994).
- [33] In the original ILP theory [32], the cubic term due to the Dresselhaus effect is assumed. Here, we deliberately changed the notation to represent the cubic-Rashba effect because only the difference in angular harmonics is important in the ILP theory.
- [34] Believing that our samples are a single-band material $(m_j = \pm 1/2 \text{ OR } \pm 3/2)$ and free from spin-flip scatterings such as Elliot-Yafet mechanism, the condition that both Ω_1 and Ω_3 coexist does not make much sense. However, to make our argument more concrete and show that the Ω_3 -only model is indeed exclusively applicable to our experiment, we performed a series of fittings varying the values (or ratio) of Ω_1 and Ω_3 . See Supplemental Material [35].
- [35] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.108.206601 for the detail of fittings.
- [36] We do not pursue the rigorousness of this assumption here, since (1) an exact form of $W(\phi)$ is unknown, (2) τ_1 nevertheless gives a good qualitative measure for the value of τ_3 , and (3) our final conclusion regarding the occurrence of the *k*-cubic-Rashba effect on the surface of SrTiO₃ is unaffected by the value of τ_3 .
- [37] S. A. Studenikin, P. T. Coleridge, N. Ahmed, P. J. Poole, and A. Sachrajda, Phys. Rev. B 68, 035317 (2003).
- [38] T. Fix, F. Schoofs, J.L. MacManus-Driscoll, and M.G. Blamire, Phys. Rev. Lett. 103, 166802 (2009).
- [39] D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, Phys. Rev. Lett. **107**, 056802 (2011).
- [40] H. Nakamura and T. Kimura, Phys. Rev. B 80, 121308(R) (2009).
- [41] I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
- [42] A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpurgo, and J.-M. Triscone, Phys. Rev. Lett. **105**, 236802 (2010).
- [43] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
- [44] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).