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The concept of valence-bond resonance plays a fundamental role in the theory of the chemical bond and

is believed to lie at the heart of many-body quantum physical phenomena. Here we show direct

experimental evidence of a time-resolved valence-bond quantum resonance with ultracold bosonic atoms

in an optical lattice. By means of a superlattice structure we create a three-dimensional array of

independent four-site plaquettes, which we can fully control and manipulate in parallel. Moreover, we

show how small-scale plaquette resonating valence-bond (RVB) states with s- and d-wave symmetry can

be created and characterized. We anticipate our findings to open the path towards the creation and analysis

of many-body RVB states in ultracold atomic gases.
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In his theory of the chemical bond, Pauling developed
the concept of quantum resonance: a quantum superposi-
tion of resonant structures with different arrangements of
the valence bonds [1]. Such resonant states are essential to
explain the chemical properties of certain organic mole-
cules like benzene [2]. In the context of high temperature
superconductivity, Anderson extended Pauling’s notion to
a macroscopic level, by proposing that electrons in Mott
insulating solid state materials could form resonating
valence-bond (RVB) states [3,4]. In a Mott insulating
phase, electrons are localized to individual atoms or mole-
cules, and the fluctuations in the charge (density) degree of
freedom are strongly suppressed. The physics is dictated
by the remaining spins, which interact via superexchange
interactions. Under certain conditions, the localized spins
are expected to evade local order and continue to fluctuate
down to zero temperature, forming a coherent superposi-
tion of many different arrangements in which the spins are
paired up into singlets or valence bonds.

Ultracold atomic gases in optical lattices [5–7] and other
quantum optical systems are promising candidates for the
quantum simulation of RVB states [8]. Their realization
would allow one to gain valuable insight into the entangle-
ment properties of these states as well as to answer funda-
mental questions in condensed matter physics like their
stability under specific Hamiltonians such as the Hubbard
model, or to test their exotic superconducting properties
upon doping [9,10]. In this work we create an array of
small-scale versions of Pauling-like RVB states in four-site
plaquettes and study their basic physical properties. Our
techniques can be directly generalized to a gas of fermionic

atoms, for which one expects that the adiabatic connection
of such isolated plaquette RVB states could lead to the
creation of a macroscopic d-wave superfluid state [9–11].
Let us consider an ultracold gas of bosonic atoms in two

internal states, loaded into a two-dimensional superlattice
structure whose elementary cell is a plaquette made out of
four wells arranged in a square pattern [Fig. 1(a)]. In the
regime in which the tunneling amplitude between adjacent
plaquettes is strongly suppressed, the system can be
regarded as a collection of independent replicas of a single
plaquette, the object of our study. At half filling, and when
the on-site interaction U dominates over the tunneling
amplitude t between wells in a plaquette, atoms are site
localized, one per site, and the physics is governed by the
remaining four effective 1

2 spins, which interact with their

next neighbors via a ferromagnetic Heisenberg interaction

J ~Si � ~Sj, with J ¼ �4t2=U [12–16].

To gain insight into the RVB states on a plaquette, it is
convenient to write the Heisenberg interaction in terms of

the swap operator X̂ij ¼ 2 ~Si � ~Sj þ 1=2, a unitary operator

that exchanges the states of the spins on the sites i and j.
The plaquette Hamiltonian then takes the form [17]:

Ĥ ¼ JxX̂x þ JyX̂y; (1)

where X̂xðyÞ involves exchanges of two spins along an x (y)

bond:X̂x ¼ ðX̂AB þ X̂CDÞ=2, X̂y ¼ ðX̂AD þ X̂BCÞ=2,withA,
B, C, D labeling the four sites of the plaquette [Fig. 1(a)].
From now on, we consider solely the subspace of total spin
zero,where all spins are part of a singlet state or valence bond.
This subspace is generated by two states, which correspond

PRL 108, 205301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
18 MAY 2012

0031-9007=12=108(20)=205301(5) 205301-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.205301


to arrangements in either vertical or horizontal bonds

[Fig. 1(b)].

Within this subspace and for identical superexchange
couplings Jx ¼ Jy � J, the Hamiltonian of Eq. (1) reduces

to Ĥ ¼ �JX̂xy, where X̂xy ¼ ðX̂AC þ X̂BDÞ=2 swaps two

spins along a diagonal. As can directly be seen, this diago-
nal exchange is equivalent to a 90� rotation of the plaquette
and converts the state into and vice versa, giving

rise to a resonance. The eigenstates are then coherent
superpositions of the form

These minimum instances of RVB states exhibit no local
magnetic order, and cannot be distinguished from each other
by measuring single-site spin observables. However they are
distinct with respect to an exchange of two spins along a
diagonal: the s-wave RVB state j�þi is symmetric; the
d-waveRVBstate j��i is antisymmetric, owing to its singlet
structure along the diagonals of the plaquette,

Our experiments began with a quasipure Bose-Einstein
condensate of about 5� 104 87Rb atoms in the Zeeman
state jF ¼ 1; mF ¼ �1i. The atoms were loaded into a
tetragonal optical lattice potential, formed by three
mutually orthogonal standing waves with wavelengths
�s ¼ 767 nm (‘‘short lattices’’) along x and y, and �z ¼
844 nm along z. Two additional standing waves with

wavelengths of �l ¼ 1534 nm (‘‘long lattices’’) that were
superimposed with the short lattices [18] along x and y
were then used to realize a three-dimensional periodic
potential whose elementary cell is a plaquette [Fig. 1(a)].
The final lattice depths were chosen to access the Mott
insulating regime with at most one atom per lattice site for
our total particle number. We then employed a sequence of
site merging, spin changing collision (SCC) [19] and
singlet-triplet oscillation (STO) operations [17,20,21] on
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FIG. 1 (color). Schematics of a single plaquette and energy
levels at half filling. (a) Scheme of the lattice potential in the x, y
plane, created by a pair of bichromatic optical lattices. The
elementary cell is made of four wells arranged in a square
configuration. (b) Energy levels of four atoms on a plaquette
in a Mott insulating state at half filling, with superexchange spin
couplings along x (y) denoted by JxðJyÞ. For any ratio Jx=Jy, the

highest energy state is a total spin- 12 singlet. In the case of

Jx=Jy ¼ 0, it corresponds to the valence-bond state ,

whereas for Jx=Jy ¼ 1 it is the s-wave RVB state j�þi. The
other total singlet for Jx ¼ Jy, lower in energy, is the d-wave

RVB state . (c) Symbols used for a singlet bond and

for the s-wave and d-wave plaquette RVB states.
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FIG. 2 (color). Initial state preparation and valence-bond os-
cillations. (a) Schematics of the preparation of an array of
valence-bond states from a unit-filling Mott insulator. (b)

Schematics of the valence-bond oscillation: starting from ,

we switch on identical superexchange couplings along x and y,
leading to a coherent oscillation between and .

(c,d) Fraction of band excitations nx;yexc (c) and STO amplitude
Ax;y
STO (d) as a function of the hold time �, with Jx ’ Jy ¼

h� 120ð10Þ Hz. (e) Frequency of the valence-bond oscillation
as a function of Jx=Jy. (f) Ratio Ay

VB=ðAx
VB þ Ay

VBÞ as a function
of Jx=Jy, where A

x;y
VB is the initial amplitude of the valence-bond

oscillations as shown in (c). The solid lines in (e) and (f) are
calculated from Eq. (1). The horizontal error bars represent the
uncertainties in lattice depths and the vertical ones represent
the 1� uncertainties of the fits to the STO traces.
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plaquettes [see Fig. 2(a)] in order to create the initial state
out of the atomic spin states jF ¼ 1; mF ¼ �1i and

jF ¼ 1; mF ¼ þ1i [22]. In total we operate in parallel over
about 103 identical plaquettes with unit atom filling.
Lattice depths of Vxl ¼ Vyl ¼ 35El

r and Vz ¼ 40Ez
r ensure

negligible atom tunneling between plaquettes [23].
To directly observe the valence-bond resonance, the

initial state was evolved under the Hamiltonian of

Eq. (1) with identical superexchange couplings along x
and y. To this aim we ramped down the short-lattice depths
in 200 �s to Vxs ¼ Vys ¼ 12Es

r, resulting in equal cou-

plings Jx ’ Jy ¼ h� 120ð10Þ Hz and a suppression of first
order tunneling as t=U ’ 1=8. Since X̂2

xy ¼ 1, the evolved

quantum state at time � is

oscillating between the states and with frequency

! ¼ 2JxðyÞ=@.
To characterize this state evolution, we measured the

projections onto the two valence-bond states Cx:
, and , which are expected

to show oscillations of amplitude 3=4, since
. Within the subspace of total singlets, the

observable Cx can be obtained either by measuring the
fraction of band excitations nxexc ¼ Cx=2 after merging
pairs of wells along the x direction, or by measuring
the amplitude Ax

STO of STO [17,20,21] induced by a

magnetic-field gradient along x [22]. As shown in
Fig. 2(c) and 2(d), we indeed observed a coherent evo-
lution of both nx;yexc and Ax;y

STO. This dynamics corresponds

to anticorrelated oscillations of the projections Cx and Cy
that reveal the periodic swapping of the valence-bond
direction. The measured oscillation frequency !=2� ¼
250ð10Þ Hz is compatible with twice the value of the
superexchange couplings, in agreement with Eq. (2).
While the damping of the valence-bond oscillation (1=e
decay time of 6(1) ms) could be attributed to inhomo-
geneities of the different plaquette parameters across the
atomic sample, the slow overall increase of nxexc and nyexc
could be caused by decoherence within a plaquette. We
provide further evidence of the valence-bond dynamics
governed by superexchange interactions by studying the
dynamics for anisotropic couplings Jx � Jy. As shown in

Fig. 2(e) and 2(f), the measured oscillation frequencies
and amplitudes as a function of Jx=Jy agree well with

the values predicted from the Hamiltonian dynamics of
Eq. (1). Site-resolved population measurements were
used to check that throughout the evolution the four
plaquette sites remained equally populated [18,22]. In
the absence of residual magnetic-field gradients we ex-
pect the atoms to remain in the singlet subspace S ¼ 0.
This was checked by holding singlet atom pairs after

the initial state preparation, and observing no conversion
to triplet pairs.
In order to create the s-wave RVB state j�þi, we made

use of the fact that it is adiabatically connected to the initial
state [Fig. 1(b)]. To follow this adiabatic path we

started from a situation in which Vxs ¼ 22Es
r and Vys ¼

12Es
r. For these parameters, Jx=Jy is negligible and is

an eigenstate of the Hamiltonian in Eq. (1). We then
decreased Vxs to 12Es

r within 5 ms using an exponential
ramp, converting the initial state into the s-wave RVB
state. In order to check the adiabaticity of the lattice-depth
ramps, we then increased the short lattice along x (y) to
22Es

r in 5 ms, transforming the RVB state back into a
valence-bond state (or , respectively). By using

STO we measured the singlet correlations along both
directions x and y for the initial, intermediate and final
states of the ramp or [Fig. 3(a)].

As expected, for the initial state we observe oscillations
close to maximum amplitude only along y and none along
x. In the intermediate state, the oscillation amplitudes are
approximately equal, as expected for a nondegenerate
eigenstate of the Hamiltonian in Eq. (1) with symmetric
couplings. After the second ramp, depending on whether
the superexchange coupling was decreased along x or y, we
observe singlet correlations mostly along the direction of
strong coupling. The measured amplitude of STO in the
final state was found to be smaller than in the initial state,
due to decoherence in our atomic sample which occurred
on a time scale of 30 ms in our setup. As can be seen in
Fig. S2 of the supplementary material, for a total ramp time
of 10 ms (gray bar) the value of Ax

STO is 0.22(2), which is

comparable to the STO amplitude of 0.24(2) obtained for
the initial state [see Fig. 2(d)].

In the RVB state j�þi, the projections on the valence-
bond states are given by Cx ¼ Cy ¼ 3=4. They can be

obtained from the STO amplitudes according to Cx;y ¼
1=4þ 3=2Ax;y

STO [22]. By averaging the measured STO

amplitudes around Jx ¼ Jy, we obtain Cx ¼ Cy ¼ 0:76ð7Þ
[Fig. 3(b)], in good agreement with the theoretical predic-
tion. We also measured Cx, Cy as a function of the coupling
anisotropy Jx=Jy, by following the adiabatic path

with a fixed total ramp time

of 10 ms. As shown in Fig. 3(b), the measurement results
are in good agreement with the theoretical values in the
adiabatic limit (solid lines) and with a model taking into
account the finite ramp time (shaded lines).
The d-wave RVB state j��i is obtained from the state
by exchanging two spins along a bond in the x

direction:

This unitary operation was implemented by a quantum
evolution of the state under the Hamiltonian Eq. (1)

for Jy ¼ 0, yielding:
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with ! ¼ 2Jx=@. For a hold time � ¼ �=! the initial
state evolves into , characterized by Cx ¼ Cy ¼ 1=4,

and reduced STO amplitudes Ax
STO ¼ Ay

STO ¼ 1=8. As

shown in Fig. 4, in that state the amplitude of STO was
indeed much reduced, in our case below the noise level.
However, the large STO amplitude along y, observed both
in the initial state and after one period of evolution
(� ¼ 2�=!), demonstrates the coherence of the evolution
and rules out a reduction of contrast at � ¼ �=! due to
decoherence. Alternatively, after preparing the j��i state,
we inverted the coupling direction by increasing in 200 �s
the short-lattice depth along x to 22Es

r and decreasing

the one along y to 12Es
r. As shown in Fig. 4, we then

observed a coherent evolution to a state with a large
overlap with , according to the measured STO.

In conclusion, we have shown direct experimental evi-
dence of a valence-bond quantum resonance in an array of
replicas of optical plaquettes, preparing and detectingmini-
mum versions of RVB states. The s-wave and d-wave
plaquette states created here could be used to encode a
minimum instance of a topologically protected qubit.

When stabilized by a Hamiltonian H ¼ JðX̂x þ X̂y þ
X̂xyÞ, corresponding to a situation in which superexchange

interaction takes also place along the diagonal bonds, these
two states form a degenerate two level system which is
immune to local decoherence arising, for instance, from
on-site fluctuations of the external magnetic field. Such an
arrangement could also be directly adapted to a setting of
four coupled quantum dots to realize protected qubits in a
solid state setting [24]. Further extensions enabled by this
work include the adiabatic connection of the plaquette RVB
and valence-bond solid states, or the study of their nonequi-
librium dynamics upon instantaneous coupling in quantum
ladders or extended two-dimensional systems. Moreover,
the plaquette tools developed here could be used as building
blocks for more complex protocols leading to a variety of
topologically ordered states, like Laughlin states or string
net condensates [17,25]. Finally, we note that all presented
results could also be obtained using fermions instead of
bosons, where the singlet valence bond is the true ground
state of a two-spin dimer. In that case, the adiabatic con-
nection of isolatedRVB states could lead to the formation of
a d-wave superfluid upon doping [9,10].
This work was supported by the DFG (FOR635,
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FIG. 4 (color). Preparation of the d-wave RVB state.
Schematics of the experimental sequence: starting from the state

we suddenly switch on the superexchange coupling along x.

The d-wave RVB state j��i is obtained at the � time of the
subsequent periodic evolution. Measured STO are shown at the
0, � and 2� times of the evolution. For the lower right state, we
inverted the coupling direction at the � time.

FIG. 3 (color). Preparation of the s-wave RVB state and adia-
batic valence-bond swap. (a) Scheme of the adiabatic conversion

or , together with STO for each state.

The STO period along x is not constant due to an increasing
magnetic gradient field during the measurements that was caused
by a finite response time of the coils producing the magnetic-
field gradient along x. The solid lines are fits of the STO taking
into account the finite rise time of the magnetic-field gradient for
the x direction. (b) Projections Cx, Cy on the valence-bond states

as a function of the ratio Jx=Jy of superexchange couplings,

measured from the STO amplitudes. The latter were rescaled in
order to give the expected value of 0.5 for the valence-bond
states and , using the data points at Jx=Jy ¼ 0:006ð2Þ
and Jx=Jy ¼ 10ð3Þ. For the point at Jx=Jy ¼ 200ð50Þ the rate of
change of the couplings was the largest and adiabaticity was not
maintained. The horizontal error bars represent the uncertainties
in lattice depths and the vertical ones represent the 1� uncer-
tainties of the fits to the STO traces. The solid lines are
calculated from the eigenstates of the Hamiltonian in Eq. (1).
The shaded lines are calculated by modeling the experimental
ramps using the Schrödinger equation. Their widths represent
the uncertainties in the lattice calibration.
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[18] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A.

Widera, T. Müller, and I. Bloch, Nature (London) 448,
1029 (2007).

[19] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel,
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