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A rigorous procedure is proposed for finding a solution to kinetic equations with the Landau electron-

electron, electron-ion, ion-electron, and ion-ion collision integrals in fully ionized plasma. The linear

plasma response to the perturbation in the electrostatic field is described in terms of plasma dielectric

permittivity. Solutions of the dispersion relation for electron plasma waves, ion-acoustic waves, and

entropy modes are found in the entire range of frequencies, wave vectors, and particle collisionality.

Several fits are obtained to enable practical applications of these results.
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Recent advances in the study of laboratory and astro-
physical plasmas and the broad scope of this research,
covering plasmas from gas discharges to inertial confine-
ment fusion targets, have underscored the need for a basic
theoretical framework that is applicable to the entire range
of temporal and spatial scales and for all ion and electron
collisional times. Nonetheless, even a basic plasma de-
scription within the context of linear response theory has
yet to be produced, a general and practical expression for
electron-ion susceptibility function that is valid for the
entire range of frequencies, !, wave numbers, k, and for
all values of the collisionality parameter k�ab (a, b ¼ e, i),
where �ab is the mean free path for collisions between
species a and b. The main difficulty in obtaining such an
expression lies in the solution of the coupled integrodif-
ferential kinetic equations of the Fokker-Planck (FP) type
[1] for the electron distribution function (DF) and ion DF.
This Letter provides a derivation of the plasma dielectric
permittivity for longitudinal perturbations and discusses
solutions of the dispersion relation for electron plasma
waves (EPW), ion-acoustic waves (IAW), and entropy
waves in two-component weakly coupled plasmas.

One way to calculate the susceptibility of collisional
plasmas for specific parameters is by finding numerical
solutions to the coupled FP kinetic equations with the
Landau collision integrals. For example, Tracy et al. [2]
solved numerically an eigenvalue problem for the linear-
ized FP equation. This work [2] is an improvement on the
studies by Ono and Kulsrud [3] and Randall [4] who used
the alternating-direction-implicit technique. However, in
all of these numerical studies the linearized ion FP equa-
tion with the complete Landau collisional term was solved
without coupling to electrons which were treated in the
collisionless approximation. Also, the broad range and
large number of plasma parameters such as, !, k, Z–the
ion charge number, A–atomic number, Ta–the particle
temperatures (a ¼ e, i), and �ai–the collision frequencies

that are involved in the theoretical description of colli-
sional plasmas make analytical and practical solutions far
more desirable than numerical simulations.
Approximate methods for finding the susceptibility

functions [5–8] have been developed before using simpli-
fied procedures, e.g., moment expansions [9,10], to solve
the complete collision integrals. They are valid in limited
domains of frequency, wavelength, and plasma parameters.
In a different approach, the simplified kinetic models such
as the Bhatnagar-Gross-Krook collision integral [11,12],
the Lenard-Bernstein collision term [13,14], or the Lorentz
model [15] have been used to derive the linear response
functions of collisional plasma. The two approaches lead to
approximate results with a limited range of applicability.
Consider linear, small amplitude, periodic, �e�i!tþikx,

perturbations of the background plasma variables. The
background state corresponds to homogeneous Max-
wellian particle DFs, Fa

M (a ¼ e, i), with densities na
(Zni ¼ ne) and temperatures Ta. The Fourier (!, k) trans-
formed perturbations (we dropped the subscripts ! and k
for simplicity) of the DF faðv;�Þ ¼ �1

0 f
a
l ðvÞPlð�Þ are

expanded in a series of Legendre polynomials Plð�Þ,
where � is the cosine of the angle between v and k.
With these expansions the kinetic equations with Landau
collisional terms are decomposed into two infinite hierar-
chies (a ¼ e; i) of equations for the harmonics fal ðvÞ of the
electron and ion DFs coupled through Coulomb terms:

L̂fal � Cl
aa � Cl

ab ¼ ðeaE=TaÞvfaM�l1;

L̂fal � �i!fal þ ikv
l

2l� 1
fal�1 þ ikv

lþ 1

2lþ 3
falþ1:

(1)

The collision operators, Cl
ab, are defined by the Rosenbluth

potentials. Because of the small mass ratio me=mi � 1,
collisions between electrons and ions can be described in a
simplified form [6,16,17],
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where �gh ¼ 1 or 0 if g ¼ h or g � h, correspondingly,

�abðvÞ ¼ 4�nbðeaebÞ2�ab=m
2
av

3 are the velocity depen-
dent particle collision frequencies, �ab is the Coulomb
logarithm, ua ¼ 4�

R
dvv3fa1=3na is the mean particle

velocity, vTa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ta=ma

p
is the particle thermal velocity,

and Rie ¼ 4�me

R
dvv3�eiðvÞfe1=3 is the friction force.

The term Cð1Þ
ie in the expression for Cl

ie in Eq. (2) is small
and can be neglected for the calculation of an ion DF. At

the same time, Cð1Þ
ie is important to ensure ion momentum

conservation. For like particle collisions, Cl
aa, we use the

general form of the collisional operator [6,16].
We seek a general solution for the harmonics of the DFs

in the form fel ¼ ½ði�l0 �!c eN
l ÞeE=kTe � ikuic

eR
l �Fe

M

and fil ¼ ð!c iN
l � i�l0ÞðeiE=kTi þRie=kniTiÞFi

M, where

the basis functions c bA
l satisfy Eqs. (1) with different

sources on the right-hand side,

L̂c bA
l þ�be

lðlþ1Þ
2

�eic
bA
l � 1

Fb
M

Cl
bb½Fb

Mc bA
l �¼SAl ; (3)

where SAl ¼ �l0�ANS
N þ 3�l1�ARS

R, SN ¼ 1, SR ¼
iv�ei=3kv

2
Te. It is convenient to rewrite the ion DF using

ui as f
i
l ¼ ikuiF

i
Mðc iN

l � i�l0=!Þ=ð1þ i!JiÞ, where Ji ¼
4�

R
v2dvc iN

0 SNFi
M=ni. We will use a simplified form of

Cl
aa for l � 1 in Eq. (3) in order to close this infinite system

of equations [18]. Because of this simplification, starting
from the order l ¼ lmax, all the equations for the harmonics
of the basis functions take on the following simple form
(l > lmax):

2L̂c bA
l ¼ �lðlþ 1Þ��

bc
bA
l ; (4)

where ��
a ¼ �ei�ae þ �aaðIa0 þ 2Ja�1=3� Ia2=3Þ and

fI; Jgam ¼ 4�=ðnavmÞRfv;1g
f0;vg dvv

mþ2Fa
M. The infinite sys-

tem of Eqs. (4) has been solved following the summation
procedure [16,18,19] where one evaluates the renormalized
effective collision frequencies �a

l from the following recur-

rence formula

�a
l ¼ �i!þ 1

2
lðlþ 1Þ��

a þ ðlþ 1Þ2
4ðlþ 1Þ2 � 1

k2v2

�a
lþ1

: (5)

Equation (5) can also be represented in terms of continuous
fractions. In practice, finding �a

lmax
with high accuracy

requires no more than 20–30 iterations. After that, it is
sufficient to solve a finite number of Eqs. (3) to find basis
functions c bA

l for l� lmax given that c
bA
lmaxþ1¼ i½ðlmaxþ1Þ=

ð2lmaxþ3Þ�ðkv=�b
lmaxþ1Þc bA

lmax
. We solve this system of

equations, expanding the basis functions c bA
l in Sonine-

Laguerre polynomials: c bA
2l ¼ �bi

vTb

P1
n¼0 c

bA
2l;nL

1=2
n ð v2

2v2
Tb

Þ
and c bA

2lþ1 ¼ �biv
v2
Tb

P1
n¼0 c

bA
2lþ1;nL

1=2
n ð v2

2v2
Tb

Þ, where �ei ¼
3

ffiffiffiffiffiffiffiffiffi
�=2

p
vTe=�eiðvTeÞ ¼ vTe=�

T
ei and �aa ¼ 3

ffiffiffiffi
�

p
vTa=

�aaðvTaÞ ¼ vTa=�
T
aa are the e-i and i-i (e-e) mean free

paths. Substitution of this expansion into Eq. (3) gives a
system of linear algebraic equations for the coefficients cbAln .
This system was solved with the MATHEMATICA software
package. The calculations were performed for lmax ¼ 8
resulting in an error related to the closure procedure that
does not exceed 1%–2%. By finding c eA

0;1 and c iA
0 from the

above approximation and using the definition of electron
DF, one obtains an electric current j ¼ �eneðue � uiÞ
(cf. [16]) in the following form

j ¼ � ie2ne
k2Te

!ð1þ i!JNN ÞEþ eneuið1þ i!JRNÞ: (6)

We have derived an ion mean velocity from the momentum

conservation equation �i!miniuiþ ikP̂i¼ZeniEþ
Rie�mene�

T
eiui; where P̂i¼4�mi=3

R
dvv4ðfi0þ2=5fi2Þ

and we use previously introduced definitions for the velocity
momenta of the electron basis functions c eA

0 and c eA
1 [16]:

fJAN; JARg ¼ 4�
R
v2dvfc eA

0 SN; c eA
1 SRgFe

M=ne, correspond-
ingly, Rie ¼ i!JNR eneE� k2uineTeJ

R
R and JNR ¼ JRN

(Onsager’s symmetry). From the definition of the ion DF

and first two equations in (3) one finds ikP̂i¼i!miniuiþ
ik2niTiui=!ð1þi!JiÞ. Using these relations and after
expressing the ion velocity, ui, in terms of the electric field,
E, the dielectric permittivity of collisional plasma � ¼ 1þ
i4�j=!E reads

�¼1þ1þ i!JNN
k2�2

De

þ1þ i!Ji
k2�2

Di

ð1þ i!JRNÞ2
1� ig!ð1þ i!JiÞ~JRR

; (7)

where �Da is the Debye length, g ¼ ZTe=Ti, and ~JRR ¼
JRR þ �T

ei=k
2v2

Te: In the collisionless kinetic limit one has
JAR ¼ 0 and fJi; JNN g ¼ ifJþð!=kvTiÞ; Jþð!=kvTeÞg=!, so
that Eq. (7) reduces to the well-known expression (cf.,
e.g., [12]): �¼ 1þP

a½1�!Jþð!=kvTaÞ�=k2�2
Da. In the

strongly collisional limit, k�ai ! 1, Eq. (7) corresponds to
the collisional hydrodynamic plasma response derived from
classical transport theory [6,17]. In the limit of cold ions,
i.e., 1þ i!Ji ¼ �k2v2

Ti=!
2, Eq. (7) reads

� ¼ 1þ 1þ i!JNN
k2�2

De

�!2
pi

!2

ð1þ i!JRNÞ2
1þ i~JRRk

2c2s=!
; (8)

where cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTe=mi

p
is the ion-acoustic velocity. Equa-

tion (8) has the same form as the dielectric permittivity
from Ref. [16]. However, we use here a definition of JRR
that involves fa1 ðvÞ and is valid for all Z while in Ref. [16]
we employed the approximation Z � 1 to calculate JRR . The
dielectric permittivity of collisional plasma, (7) or (8) is not
a simple sum of separate electron and ion contributions, but
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contains an interaction term due to the friction force be-
tween electrons and ions. In particular, in the cold ion limit
(8) this term corresponds to the last factor multiplying the
standard ion contribution: �!2

pi=!
2.

The dielectric permittivity � (7) is the main result of this
Letter. It describes the plasma response over the entire
range of frequencies, wavelengths, and for arbitrary elec-
tron and ion collisionality. The dispersion relation (DR)
� ¼ 0 describes the high-frequency, ! * !pe, EPW, the

low-frequency, !<!pi, IAW and the aperiodic perturba-

tion,! ¼ �i�, entropy waves. In the limit! � kvTe, �ei,
solution of the DR results in the well-known EPW mode

with !EPW ¼ !pe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3~k2

p
where ~k � k�De and damping

rate �EPW

�EPW ¼ �L þ ð1
2
� 2~k2Þ�T

ei þ
4

5
~k2�T

ee: (9)

The two first terms in Eq. (9) are the standard Landau, �L

[12], and e-i collisional damping rates while the last term
describes the e-e collisional contribution [20], which is
important for pure electron plasmas (e.g., a Penning trap).

In the limit ! � ðkvTe; �
T
eiÞ one may neglect the fre-

quency dependence of the functions JBA , i.e., in the quasi-
static approximation for electrons [16]. In this limit
j !JBA j� 1 and the DR reduces to

1þ 1þ ~k2

gð1þ i!JiÞþ i!

�
2JNR � JNN

1þ ~k2
� ~JRRð1þ ~k2Þ

�

�1þ1þ ~k2

g
Dið!;kÞþ iDeð!;kÞ¼0; (10)

where the electron termDe is small and contributes only to
the wave dissipation. For weakly damped IAW, the solution
of Eq. (10) is ! ¼ !s � i�s where the ion-acoustic fre-
quency is defined by the ion contribution Di from the

solution of the equation Di
0ð!s; kÞ ¼ �r � �g=ð1þ ~k2Þ

and the small damping rate (that requires g * 2),
�s ¼ �i þ �e, is given by the relations �i ¼
Di

00ð@Di
0=@!Þ�1j!¼!s

and �e ¼ rDe
0ð@Di

0=@!Þ�1j!¼!s
.

In the simplest case of a strongly nonisothermal plasma,

g � 1 and in the quasineutral approximation, ~k � 1,
when !s ¼ kcs one has �e ¼ k2c2sðJNN þ ~JRR � 2JNR Þ=2
[21]. In general our theory depends on three variables
describing: collisionality, k�ii or k�ei, the e-i temperature

ratio, g, and charge separation effects, ~k. However, we have

found that the function r, which combines g and ~k is the
correct variable to characterize the dependence of IAW

properties on g and ~k. This is reflected in the discussion of
numerical results below. In order to avoid numerical cal-
culations for each set of plasma parameters, we propose
fitting formulas below for both the IAW frequency and
damping rate for the most interesting case of r 	 1. For!s

this reads (ke;i � k�ei;ii)

!s ¼ kvTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 5=3þQðr; kiÞðGðrÞ � 5=3Þ

q
;

Qðr; xÞ ¼ r3=2x2 þ x
ffiffiffi
r

p
r3=2x2 þ 3x

ffiffiffi
r

p þ 10
;

G ¼ 3r3 þ 11r2 þ 12

r3 þ 7r
:

(11)

It describes the smooth transition from !s ¼
kvTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ 5=3

p
in a plasma with strongly collisional ions,

ki
ffiffiffi
r

p � 1, to!s ¼ kvTi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþGðrÞp

in collisionless plasma,
ki

ffiffiffi
r

p � 1 with an accuracy of better than 3%. Figure 1
compares the IAW frequency with Eq. (11) and numerical
results [2]. Similarly, we propose the following fit for the
electron IAW damping rate for g * 2 over the entire range

of electron collisionality, ke, and ~k (�e ¼ �e!pe=kcs!pi),

�e

210

75�
¼�Nþ1:7�0:5

N Z0:45k0:95Z
�0:04

e þ0:083Z0:6k
1þ0:5�N
e

keð1þ0:05Z0:6k
0:5�N
e Þð1þ ~k2Þ2=1:64

þ�Rþ0:86Z0:35k0:7e

keþ0:4Z0:35k1:7e

� 2:48ð�NRþ�0:25
NR Z0:45k0:75e Þ

ðkeþ0:24Z0:42k1:65e Þð1þ ~k2Þ
�N ¼Zþ2:74

Zþ1
; �NR¼Zþ2:72

Zþ1:4
; �R¼Zþ2:42

Zþ1:38
;

(12)
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k ii

FIG. 1 (color online). Ion-acoustic frequency !s=kcs as func-
tion of k�ii [gray dots (red dots online)] for r ¼ 1, 2, 4, 8, 16, 64
(from top to bottom, respectively) in comparison with results of
Ref. [2] [black dots (blue dots online)]. The soild lines corre-
spond to the fitting expression (11).

0.001 0.01 0.1 1 10 100

e

k ei

1 2
3

0.001

0.01

0.1

1

10

100

FIG. 2 (color online). Dependence of the electron damping
rate �e on k�ei for Z ¼ 1 [gray dots (red dots online)], 4 [light
gray dots (green dots online)], and 64 [black dots (blue dots
online)], and for �ei=�De ¼ 3 (1), 30 (2), and 300 (3). The soild
lines correspond to the fitting expression (12). The dashed lines
correspond to the collisionless limit [12].
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which reproduces the exact electron dissipative contribu-
tion with an accuracy of better than 10% for all Z in the
range 1< Z< 100. This is illustrated by Fig. 2 for
�ei=�De ¼ ð3; 30; 300Þ.

Ion contributions to IAW damping can be written in
the form �i ¼ �H

i þ Rðki; rÞ�L
i where �H

i and �L
i are the

ion collisional and collisionless (Landau) damping rates,

respectively. For ki � FðrÞ, where FðrÞ ¼ ð4þ 0:3er=2Þ=
ð7þ r2:5Þ our theory reproduces hydrodynamic ion damp-
ing [9] with excellent accuracy. Our fitting expression for
�H
i is a generalization of the result from Ref. [9] for

quasineutral IAW (~k � 1) to arbitrary ~k (c.f. Eq. (18)
from Ref. [9])

�H
i

kvTi

¼ ki
rþ 3:02

rþ 1:67

0:80rk2i þ 1:49

r2k4i þ 4:05rk2i þ 2:33
: (13)

On the other hand, �L
i is the well-known damping rate due

to the ion Cherenkov effect, which follows from a solution
of the dispersion equation for collisionless plasma. It can
be interpolated with an accuracy of � 8% by

�L
i

kvTi

¼
ffiffiffiffi
�

8

r
r2 exp

�
� r

2
�GðrÞ

2

�
10þ 21rþ r3

2r2 þ r3
: (14)

From our numerical calculations the phenomenological
function Rðr; kiÞ, which describes the smooth transition
between collisional and collisionless ion damping rates
can be represented as R�1 ¼ 1þ ½rk2i ð0:05rþ 0:04Þ��1.
This expression provides an accuracy of better than 20%
for any r 	 1. Figure 3 shows the IAW ion damping as a
function of k�ii for different r in comparison with both
numerical result [2] and our fit given by Eqs. (13) and (14).

The DR also yields a zero frequency, entropy mode! ¼
�i�EN at j ! j& kvTi corresponding to ion temperature
perturbations [2]. The damping rate from Fig. 4 is defined
by ion thermal conductivity, �i. The form of �EN illustrates
the transition from strongly collisional transport,
where �EN ¼ 2ð1þ gÞk2�i=nið5þ 3gÞ [2] and �i ¼
3:9niv

2
Ti=�

T
ii, to nonlocal [22] regimes of ion thermal

transport.

In conclusion, we have developed a theory of the dielec-
tric permittivity of collisional, fully ionized plasmas appli-
cable for arbitrary frequencies, wave numbers, collision
frequencies, and Debye lengths of both electrons and ions.
It reproduces all known limits, and describes the continu-
ous transition between them over the entire (!, k) space.
Easy to use fitting formulas are derived for IAW with
potential applications to Thomson scattering, stimulated
Brillouin scattering, and return current IAWs instability in
inertial confinement fusion plasma.
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