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We report on the approach toward the hydrodynamic regime of boost-invariant N ¼ 4 super Yang-

Mills plasma at strong coupling starting from various far-from-equilibrium states at � ¼ 0. The results are

obtained through a numerical solution of Einstein’s equations for the dual geometries, as described in

detail in the companion article [M. P. Heller, R. A. Janik, and P. Witaszczyk, arXiv:1203.0755]. Despite

the very rich far-from-equilibrium evolution, we find surprising regularities in the form of clear

correlations between initial entropy and total produced entropy, as well as between initial entropy and

the temperature at thermalization, understood as the transition to a hydrodynamic description. For 29

different initial conditions that we consider, hydrodynamics turns out to be definitely applicable for proper

times larger than 0.7 in units of inverse temperature at thermalization. We observe a sizable anisotropy in

the energy-momentum tensor at thermalization, which is nevertheless entirely due to hydrodynamic

effects. This suggests that effective thermalization in heavy-ion collisions may occur significantly earlier

than true thermalization.
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Introduction.—One of the outstanding problems of the
dynamics of quark-gluon plasma is the understanding of
the physics of thermalization. In relativistic heavy-ion
collisions at RHIC and LHC the quantitative description
of experimental data requires the applicability of hydro-
dynamics from a very early stage [1]. However, our insight
into the nonequilibrium dynamics of quark-gluon plasma is
very scarce. The above problem is often referred to as ‘‘the
early thermalization puzzle.’’ This is, in fact, a misnomer
as viscous hydrodynamics may turn out to be applicable
when the pressures are still quite anisotropic, going against
the commonly accepted paradigm that true thermalization
is necessary. One of the main results of the present work is
that for a wide range of initial conditions this is indeed the
case. Subsequent isotropization toward true thermody-
namic equilibrium occurs purely within the quantitatively
well understood viscous hydrodynamics and is trivial in
comparison.

The key physical question of interest is the time scale
after which the viscous hydrodynamic description becomes
valid. This has a further refinement as viscous hydrody-
namics is really a gradient expansion with new transport
coefficients appearing at each order. So it is very interest-
ing to determine to what extent would all-order resummed
hydrodynamics describe the plasma evolution and to what
extent is one forced to incorporate genuine nonhydrody-
namic degrees of freedom. Furthermore, the dynamics
of plasma expansion will strongly depend on the initial
state. It is very important to understand if there exists
some simple physical characterization of the initial
state determining the characteristics of the transition to

hydrodynamics and subsequent evolution. Finally, it is
interesting to understand the amount of entropy produced
during different stages of the dynamics.
In this Letter, we will address the above questions for

plasma configurations invariant under longitudinal boosts
and with no dependence on transverse coordinates. This
kinematical regime was first introduced by Bjorken [2] and
roughly mimics an infinite energy collision of infinitely
large nuclei.
Within QCD there are no techniques allowing us to

address these issues from first principles. It is thus quite
natural to consider the same questions in the context of
strongly coupled plasma in the N ¼ 4 supersymmetric
gauge theory for the description of which one can use the
AdS/CFT correspondence [3]. There, the time dependence
of plasma is translated into gravitational dynamics in 5
dimensions with a negative cosmological constant and ap-
propriate boundary conditions. Using these methods, per-
fect fluid hydrodynamics was derived at the nonlinear level
in the boost-invariant setting [4], the value of shear viscosity
was shown to agree [5] with the one extracted from linear
perturbations [6], and finally, viscous hydrodynamics was
derived without any symmetry assumptions [7].
Once we consider the far-from-equilibrium regime for

small proper times, gradient or scaling expansions cease to
be valid, and one has to deal with full Einstein’s equations.
Previous work by some of us [8], motivated by the early
results of [9], used power series expansions around � ¼ 0
to study the strongly nonequilibrium regime of Bjorken
flow. Unfortunately, the radius of convergence of these
power series was insufficient to analyze the transition to
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hydrodynamics. On the other hand, the numerical work of
[10] necessarily introduced a deformation of the physical
4-dimensional metric to pump energy and momentum into
the vacuum at early times and create, in this way, a far-
from-equilibrium state. Such a way of generating the initial
state precludes the analysis of the physical evolution
starting from � ¼ 0, in particular, the investigation of the
influence of the initial conditions on thermalization and
entropy production that we are interested in.

Motivated by this, we developed a new numerical
framework using the Arnowitt-Deser-Misner formalism
of numerical relativity and analyzed the evolution of the
plasma system starting from a range of initial conditions.
These correspond, in our setup, to specifying a single
metric coefficient function (initial profile) for the initial
geometry on the hypersurface � ¼ 0. The initial hyper-
surface is the same as in [8], however, without any
spurious coordinate singularities. Subsequently we solve
numerically 5-dimensional Einstein’s equations and ob-
tain the plasma energy-momentum tensor from the
asymptotics of the solution at the anti–de Sitter boundary.
The details of this setup can be found in a companion
article [11], while in the present Letter we will concen-
trate on the physical questions mentioned above.

Boost-invariant plasma and hydrodynamics.—The
traceless and conserved energy-momentum tensor of a
boost-invariant conformal plasma system with no trans-
verse coordinate dependence is uniquely determined in
terms of a single function hT��i—the energy density at
midrapidity "ð�Þ. The longitudinal and transverse pressure
are consequently given by

pL ¼ �"� �
d

d�
" and pT ¼ "þ 1

2
�
d

d�
": (1)

It is quite convenient to eliminate explicit dependence on
the number of colors Nc and degrees of freedom by in-
troducing an effective temperature Teff through

hT��i � "ð�Þ � N2
c

3

8
�2T4

eff : (2)

Let us emphasize that Teff does not imply in any way
thermalization. It just measures the temperature of a ther-
mal system with an identical energy density as "ð�Þ.

All-order viscous hydrodynamics amounts to presenting
the energy-momentum tensor as a series of terms ex-
pressed in terms of flow velocities u� and their derivatives
with coefficients being proportional to appropriate powers
of Teff , the proportionality constants being the transport
coefficients. For the case of N ¼ 4 plasma, the above
mentioned form of T�� is not an assumption but a result of

a derivation from AdS/CFT [7]. Hydrodynamic equations
are just the conservation equations @�T

�� ¼ 0, which are

by construction first-order differential equations for Teff .
In the case of boost-invariant conformal plasma, this

leads to a universal form of first-order dynamical equations
for the scale invariant quantity w ¼ Teff�, namely,

�

w

d

d�
w ¼ FhydroðwÞ

w
; (3)

where FhydroðwÞ is completely determined in terms of the

transport coefficients of the theory, much in the spirit of
[12]. For N ¼ 4 plasma at strong coupling, FhydroðwÞ=w
is known explicitly up to terms corresponding to 3rd order
hydrodynamics [13]

2

3
þ 1

9�w
þ1� log2

27�2w2
þ15�2�2�45log2þ24log22

972�3w3
þ . . . :

(4)

The importance of formula (3) lies in the fact that if the
plasma dynamics would be governed entirely by (even
resummed) hydrodynamics including dissipative terms of
arbitrarily high degree, then on a plot of �

w
d
d� w � FðwÞ=w

as a function of w trajectories for all initial conditions
would lie on a single curve given by FhydroðwÞ=w. If, on
the other hand, genuine nonequilibrium processes would
intervene, we would observe a wide range of curves which
would merge for sufficiently large w when thermalization
and transition to hydrodynamics would occur.
In Fig. 1(a) we present this plot for 29 trajectories

corresponding to different initial states. It is clear from
the plot that nonhydrodynamic modes are very important in
the initial stage of plasma evolution, yet for all the sets of
initial data, for w> 0:7 the curves merge into a single
curve characteristic of hydrodynamics. In Fig. 1(b) we

show a plot of pressure anisotropy 1� 3pL

" � 12 FðwÞ
w � 8

for a selected profile and compare this with the correspond-
ing curves for 1st, 2nd, and 3rd order hydrodynamics. We
observe, on the one hand, a perfect agreement with
hydrodynamics for w> 0:63 and, on the other hand, a
quite sizable pressure anisotropy in that regime, which is
nevertheless completely explained by dissipative hydro-
dynamics (see [10] for similar conclusion).
In order to study the transition to hydrodynamics in

more detail, we will adopt a numerical criterion for ther-
malization which is the deviation of � d

d�w from the 3rd

order hydro expression (4)

FIG. 1 (color online). (a) FðwÞ=w versus w for all 29 initial
data. (b) Pressure anisotropy 1� 3pL

" for a selected profile.

Dashed lines (from above) represent 2nd, 1st, and 3rd order
hydrodynamic fits, respectively.
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Despite the bewildering variety of the nonequilibrium
evolution, we will show below that there exist, however,
some surprising regularities in the dynamics.

Initial and final entropy.—Apart from the energy-
momentum tensor components, a very important physical
property of the evolving plasma system is its entropy
density s [per transverse area and unit (spacetime) rapid-
ity]. In the general time-dependent case, the precise holo-
graphic dictionary for determining entropy is missing.
Nevertheless, in the present case, due to high symmetry,
entropy seems to be defined unambiguously in terms of
1=4GN of the apparent horizon (AH) area element mapped
onto the boundary along ingoing radial null geodesics
[10,14,15].

For all of the initial profiles that we considered, we
observed an apparent horizon that was pierced by a radial
null geodesic starting from � ¼ 0 on the boundary (see
Fig. 2). This shows that the initial conditions always had
some entropy per unit rapidity to start with.

The main very surprising observation of our work is that
the initial entropy density measured in units of effective
temperature at � ¼ 0 is a key characterization of the initial
state which, to a large extent, determines the features of the
subsequent transition to hydrodynamics as well as the final
produced entropy.

In the following it is convenient to introduce a dimen-

sionless entropy density sn-eq ¼ sAH=½12N2
c�

2ðTðiÞ
effÞ2�. In

order to evaluate the final entropy density at � ¼ 1, we
adopted the following strategy. After observing a passage
to hydrodynamics, we fitted a 3rd order hydrodynamic
expression for Teff ,

Teff ¼ �

ð��Þ1=3
�

1� 1

6�ð��Þ2=3 þ
�1þ log2

36�2ð��Þ4=3

þ�21þ 2�2 þ 51 log2� 24log22

1944�3ð��Þ2
�

(6)

to obtain the remaining single scale �. Since at � ¼ 1
perfect fluid hydrodynamics applies, we can use the stan-

dard expression for entropy to get sðiÞn-eq ¼ �2ðTðiÞ
effÞ�2.

Once this has been done we can now determine the

entropy production sðfÞn-eq � sðiÞn-eq as a function of sðiÞn-eq for
all the considered profiles. Despite the huge differences in
the evolution evident in Fig. 1(a), we observe a clear
functional dependence of the entropy production on the
initial entropy. The results are shown in Fig. 3 together

with a fit sðfÞn-eq � sðiÞn-eq ¼ 1:64ðsðiÞn-eqÞ1:58.
Properties of thermalization.—We will now proceed to

study in detail the properties of the transition from far-
from-equilibrium regime to hydrodynamics. We will adopt
the criterion (5), which imposes quite precise agreement
between the equations of motion coming from third order
hydrodynamics (being the most precise description cur-
rently known) and the actual evolution of the energy den-
sity of the plasma obtained from numerically solving the
full Einstein’s equations. This criterion is quite different
from criterions based on isotropization of the longitudinal
and transverse pressures like the one adopted in [8]. In
particular, Fig. 1(b) shows quite a sizable pressure anisot-
ropy, which is nevertheless entirely due to hydrodynamic
modes.
Using the criterion (5), we determine the thermalization

times for 29 initial profiles. If we were to modify the
threshold, the thermalization time would of course shift,
but for most profiles not significantly [11]. However, it
is fair to say that thermalization is not a clear-cut event
but rather happens in some narrow range of proper
times.
With this proviso we will now proceed to analyze the

following features of the thermalization time: (i) the
dimensionless parameter w ¼ Teff�, (ii) the thermalization
time in units of initial temperature, and (iii) the ratio of the
effective temperature at the time of thermalization to the
initial (effective) temperature.
In Fig. 4, we show a plot of the values of w at the time of

thermalization as a function of the initial entropy. We see
that for a wide range of initial entropies, the values of w at
thermalization are approximately constant and decrease
only for initial data with very small entropies.
Subsequently, we found an unexpectedly strong corre-

lation of the thermalization time with the initial entropy

FIG. 2 (color online). The apparent horizon (black U-shaped
curve) and a radial null geodesic (red curve) sent from the
boundary (left edge of the plot) at � ¼ 0 into the bulk for a
sample profile. u is a bulk coordinate.

FIG. 3 (color online). Entropy production as a function of
initial entropy.
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(see Fig. 5). This is very surprising, taking into account the
huge qualitative differences in the evolution of the plasma
when starting from various initial conditions.

Another important aspect is the question of which part of
the cooling process of the plasma occurs in the far-from-
equilibrium regime, and which part occurs within hydro-
dynamic evolution. This can be quantified by the ratio of
the effective temperatures at the thermalization time and at
� ¼ 0. The plot in Fig. 5 shows a very clear correlation of
this quantity with the initial entropy. The meaning of the
points with high entropy requires some comment. We
found that for these initial conditions, the energy density
initially rises and only later decreases; thus, even a ratio of

TðthÞ
eff =T

ðiÞ
eff close to 1 is realized after a sizable nonequilib-

rium evolution [11].
Conclusions.—The crucial new feature of the holo-

graphic studies of Bjorken flow reported here is the ability
to track physical observables from the far-from-
equilibrium regime at � ¼ 0 up to thermalization and
subsequent hydrodynamic evolution without introducing
any deformations in the field theory Lagrangian. The initial
state is highly anisotropic and , in particular, always has a
negative longitudinal pressure [8,9]. Despite the very rich
early time dynamics, which, depending on the initial state,
might have a plateau, a bump, or a sharp decrease in
the effective temperature as a function of proper time,
we uncovered surprising regularities in the behavior of
the total produced entropy and effective temperature at
thermalization as functions of initial entropy (all measured
in units of effective temperature at � ¼ 0). An interesting
curiosity is that despite describing an expanding medium,

the effective temperature at thermalization might be higher
than the initial one for initial states with sufficiently big
entropy. For initial states with small entropy, the energy
density at thermalization is much smaller than the one at
� ¼ 0, and hence a significant part of the cooling process is
of a nonequillibrium nature. Moreover, we observe
generically a sizable pressure anisotropy at thermalization,
which is nevertheless entirely understood in terms of
dissipative hydrodynamics. An effective thermalization

time wðthÞ ¼ TðthÞ
eff �

ðthÞ, i.e., thermalization time measured

in units of the effective temperature at thermalization
depends on the initial state, but not strongly, and is between
0.37 and 0.67 for all considered initial states (a reasonable
RHIC estimate, T ¼ 500 MeV and � ¼ 0:25 fm=c gives
w ¼ 0:63). Finally, let us note that we could associate
with all these initial data, an initial entropy already at
� ¼ 0 due to the presence of an apparent horizon. This
observation shows that the thermalization and
applicability of (all-order) viscous hydrodynamics is not
necessarily associated with the sudden appearance of a
horizon.
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