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We general-relativistically calculate the frequency of fundamental torsional oscillations of neutron star

crusts, where we focus on the crystalline properties obtained from macroscopic nuclear models in a way

that is dependent on the equation of state of nuclear matter. We find that the calculated frequency is

sensitive to the density dependence of the symmetry energy, but almost independent of the incompres-

sibility of symmetric nuclear matter. By identifying the lowest-frequency quasiperiodic oscillation in giant

flares observed from soft gamma-ray repeaters as the fundamental torsional mode and allowing for the

dependence of the calculated frequency on stellar models, we provide a lower limit of the density

derivative of the symmetry energy as L ’ 50 MeV.
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Observations of the global oscillations of stars play a
significant role in probing the properties of stellar matter,
as in the case of the Sun. Studies in this direction are often
referred to as asteroseismology. Oscillations of neutron
stars are expected to give an insight to the properties of
matter under conditions of ultrahigh density. Recent ob-
servations of the quasiperiodic oscillations (QPOs) in giant
flares from soft gamma-ray repeaters (SGRs) [1] suggest
that long-awaited evidence for the neutron star oscillations
has been given with the help of coupling of gigantic
magnetic fields with the solid crust. So far, three giant
flares have been detected from SGR 0526-66, SGR 1900þ
14, and SGR 1806-20, and, through the timing analysis of
the x-ray afterglow, the QPOs with frequencies in the range
from tens of hertz up to a few kilohertz have been discov-
ered [1]. Many theoretical attempts to explain the observed
QPO frequencies have been done in terms of the torsional
oscillations in the crustal region and/or the magnetic os-
cillations (e.g., Refs. [2–9]). If the QPOs in giant flares are
associated with the crustal oscillations, the properties of
inhomogeneous nuclear matter in the crust could be
clarified [10–12].

The outer part of neutron stars can be described as
follows. Below an ionic ocean in the vicinity of the surface,
a bcc Coulomb lattice of nuclei embedded in a roughly
uniform electron gas is considered to compose a crustal
region. In this region, nuclei become gradually neutron rich
with increasing density and even drip neutrons at a density
of about 4� 1011 g cm�3. Near normal nuclear density,
this crustal region is considered to melt into uniform
nuclear matter. Just before melting, roughly spherical nu-
clei are so closely packed that global deformations into
rodlike nuclei could occur. As the density increases further,
possible changes of the nuclear shape are rod, slab, tube,
and bubble [13,14]. These exotic nuclei are often called

‘‘nuclear pasta.’’ Not only the density region of the pasta
phases but also the charge number of roughly spherical
nuclei is known to be sensitive to the empirically uncertain
density dependence of the symmetry energy [15,16].
Generally, it is difficult to observationally probe the prop-
erties of matter in the crust, but asteroseismology could
exceptionally help to constrain the matter properties,
such as nuclei present and the equation of state (EOS)
(e.g., Refs. [17–20]). In this Letter, we will show by
systematic analyses that an approach to the QPOs in
SGR giant flares in terms of the torsional shear modes in
the crust could severely constrain the density dependence
of the symmetry energy.
We begin with the bulk energy per nucleon near the

saturation point of symmetric nuclear matter at zero tem-
perature, which can be written as a function of nucleon
density n and neutron excess � [21],

w ¼ w0 þ K0

18n20
ðn� n0Þ2 þ

�
S0 þ L

3n0
ðn� n0Þ

�
�2;

(1)

where w0, n0, and K0 are the saturation energy, saturation
density, and incompressibility of symmetric nuclear
matter, respectively. The parameters L and S0 characterize
the symmetry energy coefficient SðnÞ: S0 ¼ Sðn0Þ is the
symmetry energy coefficient at n ¼ n0, while L ¼
3n0ðdS=dnÞn¼n0 is the symmetry energy density derivative

coefficient. The parametersw0, n0, and S0 can be relatively
easier to determine from empirical masses and radii of
stable nuclei [22]. On the other hand, the remaining two
parameters, L andK0, are more difficult to determine. Here
we introduce a new parameter y defined as y ¼
�K0S0=ð3n0LÞ, which denotes the slope of the saturation
line in the vicinity of � ¼ 0 [22]. Two of us (K. O. and
K. I.) constructed the model for the EOS of nuclear matter
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in such a way as to reproduce Eq. (1) in the limit of n ! n0
and � ! 0, calculated the optimal density distribution of
stable nuclei within a simplified version of the extended
Thomas-Fermi theory, and obtained the values of w0, n0,
and S0 for given y (or L) and K0 by fitting the charge
number, mass excess, and charge radius that can be calcu-
lated from the optimal density distribution to the empirical
behavior. In a manner similar to Ref. [15], we adopt
the parameter range satisfying 0<L< 160 MeV,
180 MeV � K0 � 360 MeV, and y <�200 MeV fm3.
In fact, this parameter range reproduces equally well the
mass and radius data for stable nuclei and effectively
covers even extreme cases [22]. With such parameters,
we can obtain the crust EOS and the equilibrium nuclear
shape and size by generalizing the Thomas-Fermi model
for nuclei to matter in the crust. The results for the nucleon
densities n1 at which the nuclear shape changes from
spherical to cylindrical, and n2 at which the nuclear matter
becomes uniform, were tabulated for several sets of y
(or L) and K0 in Table I. Note that the interval between
n1 and n2, which corresponds to the pasta region, decreases
with L and vanishes at L� 100 MeV.

We turn to the equilibrium structure of nonrotating
neutron stars, which is determined by the Tolman-
Oppenheimer-Volkoff (TOV) equations for given EOS of
neutron star matter. For a solution to these equations, the
metric can be described in terms of the spherical polar
coordinates r, �, and � as

ds2 ¼ �e2�ðrÞdt2 þ e2�ðrÞdr2 þ r2d�2 þ r2sin2�d�2:

(2)

However, the EOS for the core surrounded by the crust is
still uncertain, although there are many calculations based
on realistic nuclear interactions and even constraints from
the observationally deduced neutron star masses and radii
[23,24]. To avoid this uncertainty, we here construct the
crust with the EOS models mentioned above by solving the
TOVequations inward from the surface of the star for given
stellar massM and radius R as in Ref. [25]. We remark that
the thickness of the crust thus constructed is consistent

with a typical behavior given in terms of M and R by
Eq. (18) in Ref. [26].
We next consider the shear modulus of a crustal part

composed of spherical nuclei of charge Ze and number
density ni, which can be approximately described as [27]

� ¼ 0:1194niðZeÞ2=a; (3)

where a ¼ ð3=4�niÞ1=3 is the Wigner-Seitz radius. Note
that this formula is derived in the limit of zero temperature
from Monte Carlo calculations of the shear modulus aver-
aged over all directions for a perfect bcc Coulomb crystal
of point charges embedded in a neutralizing uniform back-
ground [28]. We will use this formula for calculations of
the torsional oscillation frequencies since effects of quan-
tum zero-point motions and thermal fluctuations are neg-
ligible. For pasta nuclei, except bubbles, the elasticity is
expected to be much lower than that for spherical nuclei
[29]. Moreover, the core, which is expected to be com-
posed mostly of fluids, may have a structure with non-
vanishing elasticity [30]. Here, we simply assume� ¼ 0 at
n > n1, as in Ref. [12]. Within this assumption, the shear
modulus at n > n1 is underestimated, which tends to lower
the torsional oscillation frequencies. The frequencies as
will be estimated below should thus be regarded as lower
limits basically, but still will be shown to play a role in
constraining L.
Since the torsional oscillations on a spherically symmet-

ric star are incompressible, the star is free from deforma-
tion and density variation during such oscillations. One can
thus determine the frequencies of the torsional oscillations
with satisfactory accuracy even if one neglects the result-
ing metric perturbations by setting �g�� ¼ 0, which is

known as the relativistic Cowling approximation. Within
this approximation, the torsional oscillations can be de-
scribed by a single perturbation variable, i.e., the angular
displacement of the stellar matter Y which is related to the
� component of the perturbed 4-velocity of a matter
element �u� by �u� ¼ e��@tYðt; rÞ@�P‘ðcos�Þ= sin�
with the ‘th order Legendre polynomial P‘. Assuming
Yðt; rÞ ¼ ei!tYðrÞ, one can obtain the perturbation equa-
tion forYðrÞ from the linearized equation of motion as [31]

Y00 þ
��

4

r
þ�0 ��0

�
þ�0

�

�
Y0

þ
�
�þ p

�
!2e�2� � ð‘þ 2Þð‘� 1Þ

r2

�
e2�Y ¼ 0; (4)

where � and p are the energy density and pressure, and the
prime denotes the derivative with respect to r. To deter-
mine the eigenfrequencies, we adopt the zero-traction
condition at n ¼ n1 and the zero-torque condition at the
star’s surface. These boundary conditions reduce toY0 ¼ 0
at n ¼ 0, n1 [5,31]. We remark that neutron superfluidity
ignored here would subtract the mass density of superfluid
neutrons from the enthalpy density �þ p and hence en-
hance the eigenfrequencies [32].

TABLE I. The pasta density region calculated for several sets
of the EOS parameters.

y (MeV fm3) K0 (MeV) L (MeV) n1 (fm�3) n2 (fm�3)

�220 180 52.2 0.060 0.079

�220 230 73.4 0.064 0.073

�220 360 146.1 0.066 0.066

�350 180 31.0 0.058 0.091

�350 230 42.6 0.063 0.086

�350 360 76.4 0.072 0.076

�1800 180 5.7 0.058 0.134

�1800 230 7.6 0.058 0.127

�1800 360 12.8 0.058 0.118
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First, to see the dependence of the fundamental torsional
oscillations on the EOS parameters, we calculate the cor-
responding eigenfrequency for a typical stellar model with
M ¼ 1:4M� and R ¼ 12 km. Figure 1 shows the fre-
quency of the ‘ ¼ 2 fundamental torsional oscillations

0t2 calculated for the nine sets of L and K0 that are

tabulated in Table I, together with the lowest QPO fre-
quency in SGR 1806-20 [1]. From this figure, one can
observe that 0t2 is almost independent of K0 in the parame-

ter range adopted here once the stellar model is fixed. Such
independence can be seen for various stellar models rang-
ing R ¼ 10, 12, and 14 km as well as M ¼ 1:4M� and
1:8M�. We can thus focus on the L dependence of the
calculated 0t2, which arises mainly because the nuclear

charge Z decreases with L through the surface property
[15], leading to decrease in the shear modulus (3) with L.
Since Z depends strongly on L in the vicinity of n ¼ n1,
this region is likely to play a role in constraining L via the
evaluations of 0t2. To see the L dependence in a continuous

manner, we derive a fitting formula for 0t2 by assuming the

polynomial form,

0t2 ¼ c0 � c1Lþ c2L
2; (5)

where c0, c1, and c2 are the adjustable parameters that
depend on M and R. In fact, as can be seen in Fig. 1, this
formula well reproduces the dependence of 0t2 on L.

The fitting formula thus obtained is exhibited in Fig. 2.
We find from this figure that 0t2 for fixed L can be deter-

mined within the accuracy of�20%, if R is in the range of
10–14 km. By shiftingM from 1:4M� up to 1:8M�, we find
that 0t2 for R ¼ 10, 12, and 14 km decreases only by�14,
10, and 9%, respectively. For clarity, we plot, in Fig. 3, 0t2
estimated for stellar models ranging 10 km � R � 14 km
and 1:4M� � M � 1:8M�. The results are confined within
the painted region, which is so narrow that we can con-
strain L as we shall see.

Let us assume that the observed QPOs in SGR giant
flares arise from the torsional oscillations in neutron star
crusts and note that among many eigenfrequencies of the

torsional oscillations 0t2 is the lowest. Then, 0t2 would

become equal to or even lower than the lowest frequency
in the observed QPOs. Consequently, one can constrain L
as L * 50 MeV from the painted region in Fig. 3. Recall
that the calculated 0t2 is likely to be underestimated be-

cause of the simplified treatments of the shear modulus and
the enthalpy density. In particular, elasticity in the pasta
phases ignored here would act to increase 0t2 as long as

n2 > n1 [12]. At L * 50 MeV, however, n2 � n1 is al-
ready small (see Table I). The resultant modifications on
the L constraint are thus expected to be small.
We proceed to show the frequency of the first overtone

of the ‘ ¼ 2 torsional oscillations 1t2 calculated again for

the nine sets of L and K0 that are tabulated in Table I. The
results withM ¼ 1:4M� andR ¼ 10, 12, 14 km are plotted
in Fig. 4. We find from this figure that 1t2 depends not only
on L, but on K0 and R significantly, in contrast to the case
of 0t2. The R dependence arises because basically 1t2 is

inversely proportional to the crust thickness, which in turn
increases as R2 [26]. The K0 dependence comes presum-
ably from the K0 dependence of n1 (see Table I), but could
be modified drastically once elasticity in the pasta phases is
allowed for. This issue will be addressed elsewhere [33].
In summary, we have investigated the fundamental tor-

sional mode and the first overtone in neutron star crusts for
various EOS and stellar models. The identification of the
lowest QPO frequency observed from SGR 1806-20 as 0t2
would then allow us to constrain L as L * 50 MeV.

FIG. 1 (color online). Frequency of the ‘ ¼ 2 fundamental
torsional oscillations, 0t2, plotted as a function of L for M ¼
1:4M� and R ¼ 12 km. The horizontal dot-dashed line denotes
the lowest QPO frequency observed from SGR 1806-20 [1],
while the solid thick line denotes the fitting formula (5).

FIG. 2 (color online). 0t2 given by formula (5) forM ¼ 1:4M�
and R ¼ 10, 12, 14 km.

FIG. 3 (color online). Same as Fig. 2 for 10 km � R � 14 km
and 1:4M� � M � 1:8M�.
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At present, this constraint is fairly stringent because experi-
mental constraints on L have yet to converge [34]. While
there are earlier publications that remark the sensitivity of

0t2 and 1t2 toL [10,12], the presentwork is the first to provide

a lower limit of L by sufficiently accurate and systematic
calculations through the general-relativistic mode evalu-
ations and the Thomas-Fermi treatment of nuclei. The
present constraint already suggests that the pasta phases, if
any in neutron stars, would occur in a narrow density region.
Neutron superfluidity and pasta elasticity would make the
constraint on L and the pasta region even more stringent.
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