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We evidence experimentally and theoretically that natural convection driven by solutal density

differences in a molecular binary mixture can boost the transport of colloids. We demonstrate that

such buoyancy-driven flows have a negligible influence on the gradients that generate them, for moderate

Rayleigh numbers in a confined geometry. These flows therefore do not homogenize the binary mixture

but can disperse very efficiently large solutes. We illustrate the relevance of such effects thanks to several

original experiments: drying of confined droplets, microfluidic evaporation, and interdiffusion in micro-

fluidic flows.
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Natural convection, i.e., flows induced by differences of
density that generate buoyancy forces, has been the focus
of intense research during the past 50 years, in a wide range
of topics: physics of oceans, insulation of buildings, etc. [1]
Density differences arise either from thermal or solutal
gradients and lead to buoyancy-induced convection that
can modify heat and mass transfers in a complex way [1].
For a thin liquid layer confined between two plates of
length L separated by a distance h (Fig. 1), density gra-
dients (��=L) orthogonal to the gravity g always lead to a
buoyancy-driven flow U, as there is no critical threshold
for convection [1]. A scaling estimate for U can be ob-
tained from a simple balance between buoyancy (gh��=L)
and viscous forces (�U=h2) [2]. For solutal gradients
within the fluid, U� ð��=LÞ�0gh3=�, where the density
is �ð�Þ ¼ �0 þ �0�, � being the volume fraction of sol-
ute, and ��=L the concentration gradient. The significance
of this natural convection for the transport of the solute� is
governed by the ratio of convective to diffusive fluxes [2]:

Uh

D
¼ �0��gh4

�LD
¼ Ra; (1)

where D is the diffusion coefficient of the solute and we
introduce the Rayleigh number Ra. Since Ra� h4, diffu-
sion dominates the transport of solute in confined geome-
tries [2], often leading to the erroneous conclusion that
such buoyancy-driven flows are negligible.

In the present Letter, we first go beyond the above
scaling estimate of U and demonstrate thanks to the lubri-
cation approximation that diffusion still dominates the
transport of �, for Ra<Oð1Þ in a confined geometry
(h � L). Yet, convection still persists up to the complete
relaxation of the concentration gradients and has an impact
on the transport of less mobile solutes such as dilute
colloids dispersed in the fluid. Indeed, the significance of
convection over diffusion is now estimated thanks to
Uh=Dc ¼ RaD=Dc (Dc is the diffusion coefficient of the
colloids), that can reach high values for Dc � D.

In the following, we first demonstrate this striking result
and then report several experiments that generate weak
transverse concentration gradients within binary mixtures,
thus leading to sustained buoyancy-driven flows. In these
confined geometries, concentration gradients arise either
by the evaporation of the solvent (from confined droplets or
from microchannels) or during transverse mixing between
coflowing liquid streams in a microchannel. In these ex-
periments, natural convection negligibly influences the
solutal gradients that generate it but strongly enhances
the transport of colloids dispersed in the fluid.
We first consider the case of a simple binary mixture in a

confined geometry (Fig. 1), with constant interdiffusion
coefficient D and viscosity �. Within the lubrication ap-
proximation and at a small Reynolds number, the volume-
averaged velocity u ¼ ðux; uzÞ follows [3,4]:

FIG. 1. Top: Steady velocity field computed from finite ele-
ments simulation of the Stokes equation and Eq. (3), in a box
with aspect ratio L ¼ 10h (no-slip velocity at the boundaries and
imposed � at x ¼ �L=2, Ra ¼ 20). Isoconcentration lines are
also shown. (a) Comparison between the normalized velocity
profile uxðzÞ at x ¼ 0 computed from finite elements simulation
(� , um is the maximal value) and the theoretical prediction,
Eq. (4) (solid line). (b) � at x ¼ 0 vs z from the numerical
simulation.
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r � u ¼ 0; �@2zux ¼ @xp; @zp ¼ ��ð�Þg; (2)
where p is the pressure and g the gravity. The concentra-
tion � follows the convection-diffusion equation:

@t�þ u � r� ¼ D��: (3)

Thanks to scaling analysis [4], we can demonstrate that
vertical gradients are rapidly damped by diffusion
(@z� � 0), for time scales larger than h2=D when Ra
remains moderate, i.e., Ra<Oð1Þ. Averaging of Eq. (3)
over z and assuming there is no applied pressure [4] leads
to the conclusion that the transport of � is mostly domi-
nated by diffusion, i.e., @t� � D@2x�: Buoyancy-driven
flows hardly affect the transport of solute in such a regime.
This result comes from the fact that diffusion over z
dominates convection [confined geometry and Ra<Oð1Þ]
and from the continuity equation that imposes a zero net
flow rate over h,

R
h
0 dzux ¼ 0. Importantly, flow yet per-

sists up to the relaxation of the gradients of concentration
along x through diffusion. For an uniform gradient @x�,
this flow is given by [4]

ux ¼ �0gh3@x�
12�

~zð1� ~zÞð2~z� 1Þ; uz ¼ 0; (4)

where ~z ¼ z=h. ux reaches maximal values of ux �
0:008ðD=hÞRa at ~z � 0:2 and 0.8. Similar flows are also
found in the problem of heat transfer across double win-
dows [5] or in thermocapillary convection in a horizontal
liquid layer [6]. Figure 1 displays numerical results from
finite elements of the Stokes equation and of Eq. (3) for
Ra ¼ 20, without the lubrication approximation (L¼10h)
and with imposed concentrations at x ¼ �L=2 (no-slip
boundary conditions at the walls). This flow is well ap-
proximated by Eq. (4) far from the lateral walls and does
not influence the concentration gradients that generate it
[e.g., Fig. 1(b)] as expected, since Ra remains of the order
of Oð1Þ (note the prefactor 0.008 leading to uxh=D �
0:008Ra). We now illustrate such a theoretical scenario,
by using several experiments that generate weak solutal
gradients in confined geometries.

Confined drying.—A droplet of an aqueous solution
squashed between two circular plates is left to evaporate
at room temperature (Fig. 2) [7]. This confined two-
dimensional geometry allows a neat control of the vapor
removal from the droplet interface by diffusion and, thus,
casts a typical time scale for evaporation given by �d ¼
R2
w= ~D. ~D depends on the diffusion coefficient of water in

the vapor phase and on the volume of water molecules at
saturation ( ~D � 2:2� 10�9 m2=s at room temperature)
[7]. During the receding of the air-water interface, and
thus the decrease of the droplet area �RiðtÞ2, nonvolatile
solutes concentrate within the droplet. Figure 2(b) shows
snapshots of the drying of an aqueous colloidal dispersion:
Strong concentration gradients of colloids develop close to
the receding interface, eventually forming a crust. When

the initial solution is a molecular binary mixture [e.g.,
water-glycerol; Fig. 2(c)] containing dispersed colloids,
an axis-symmetrical flow is evidenced and convects the
colloids, preventing them from accumulating at the menis-
cus [8]. Such a behavior has been evidenced for a wide
range of binary mixtures (polymers, etc.), and the flow is
always (�0 > 0) directed towards r ¼ 0 for z < h=2 and
towards the interface for z > h=2. To definitely claim that
this is an example of natural convection coming from the
concentration gradients that develop within the binary
mixture during evaporation, we present below a detailed
model and make direct comparisons with experimental
data [4].
We recently described theoretically the drying of binary

mixtures (dilute up to a concentrated dispersion or solu-
tion) in such confined droplets [9]. We showed that the
combined measurements during drying of the droplet area
�ðtÞ ¼ ½RiðtÞ=R0	2, and of the solute concentration profiles
�ðr; tÞ, can lead to estimates of thermodynamic and kinetic
data of the mixture. The expected behaviors strongly de-
pend on the Péclet number Pe ¼ R2

0=ðD�dÞ that compares

solute diffusion and drying kinetics. For large Pe, signifi-
cant concentration gradients develop close to the receding
meniscus [Fig. 2(b) for a dilute colloidal dispersion], and
the evolution of �ðtÞ depends on the collective diffusion
coefficient of the mixture [9].
For a small Péclet number, as is often the case for

molecular binary mixtures (D � 10�9 m2=s) and using
small droplets, concentration is almost homogenous over
the droplet during drying �ðtÞ � �0=�ðtÞ, �0 being the
initial concentration of the mixture. In this regime, we can

FIG. 2 (color online). (a) Evaporation of an aqueous solution
from a confined droplet (h � 100–500 �m, Rw ¼ 4 cm, and
initial radii R0 ¼ 1–3 mm). For a binary mixture, evaporation
yields concentration gradients along the radial direction that
generate an axis-symmetrical buoyancy-induced flow (red
loops). (b) Aqueous colloidal dispersion (h ¼ 140 �m and
fluorescent colloids of radius 500 nm): Concentration gradients
form close to the droplet meniscus during the decrease of the
droplet area. (c) The same colloids but dispersed in a water-
glycerol mixture: Buoyancy-driven flows prevent the colloids
from accumulating at the receding contact line [8].
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demonstrate that the concentration gradients inside the
droplet are well approximated by [4]

@r�ðr; tÞ ��0

�

2r

R2
i

	; 	¼�½að�Þ � ae	 ~D
4D logð
�Þ � 1; (5)

where að�Þ � ae is the driving force of evaporation [ae the
external humidity and að�Þ the activity of the mixture] and

 ¼ ðR0=RwÞ2.

The small concentration difference across the droplet is
given by �� ¼ 	�0=� and leads to a buoyancy-driven
flow urðzÞ whose magnitude is estimated thanks to Ra ¼
�0gh4��=ð�DRiÞ. In the framework of the lubrication
approximation (confined droplet), urðzÞ follows exactly
Eq. (4) with gradients calculated by using Eq. (5) [4].

To test this model, we performed several experiments on
glycerol-water mixtures (� ¼ 0:2–1, h ¼ 140–450 �m,
�0 ¼ 1–8%, R0 ¼ 1:5–2:6 mm). In this experimental
range, the viscosity � � 1 mPa s and the interdiffu-
sion coefficient D � 10�9 m2=s are roughly constants,
að�Þ � 1, and almost homogeneous drying always occurs
[4]. We first measure velocity profiles urðzÞ by using
particle tracking velocimetry and a high numerical aper-
ture objective mounted on a piezotransducer, on dilute
colloidal tracers. urðzÞ normalized by their maximal veloc-
ities um are shown Fig. 3(a) for several experiments: All the
data collapse onto the z dependence given by Eq. (4). To go
a step further, we performed systematic measurements of
um at r ¼ RiðtÞ=2 for all the experimental range investi-
gated. These data are shown Fig. 3(b) against Ra=h, and
with the theoretical prediction given by Eqs. (4) and (5),
leading to urðRi=2Þ � 0:008ðD=hÞRa with no adjustable
parameters (we only use literature values for �, D, ~D, and
�0) [4]. The adequation with the model demonstrates with-
out any ambiguity the origin of these hydrodynamic recir-
culations. Importantly, the concentration gradients leading
to convection are always very small (��< 0:5% in the
experiments investigated), and the associated Ra remains
small in such confined geometry. The buoyancy-driven
flow [see Fig. 2(c)] therefore does not homogenize the
binary mixture but homogenizes only the colloids. We

now illustrate briefly, thanks to two different experimental
situations, the universality of such flows and their signifi-
cance for the transport of colloidal species in confined
geometries.
Microfluidic evaporation.—We consider pervaporation-

based microfluidic devices, called microevaporators [10].
These tools concentrate in a controlled way solutes in
aqueous solutions (from molecules to colloids), thus allow-
ing kinetic explorations of phase diagrams. Briefly, water
pervaporates through a thin poly(dimethylsiloxane)
(PDMS) membrane from a nanoliter microfluidic channel,
thus yielding a compensating flow from the reservoir that
convects and concentrates solutes at the tip of the micro-
channel (Fig. 4). The detailed mechanisms at work have
been investigated in depth [11]: We only evidence here
regimes where sustained buoyancy-driven flows are gen-
erated [4].
For dilute mixtures, the evaporation-driven flow (aver-

aged over the height h) is linear in the permeation zone:
vðxÞ ¼ �v0x=L0, where v0 is the mean velocity at the
entrance of the microevaporator (� 0:1–10 �m=s) [10].
This flow convects solutes, which are accumulated in a box

of size p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL0=v0

p
, coming from the competition be-

tween convection and solute diffusion [10]. Interestingly,
the chemical composition of the reservoir can be changed
in time, opening the way to reach steady out-of-equilibrium
states [11]. Solute is first accumulated during a given time,
and then pure water is placed in the reservoir. After a
transient, a steady concentration profile in solute is
reached, from pure water up to a given concentration in
solute at x ¼ 0, and its shape depends on the balance
between the pervaporation-driven flow and solute diffusion
[4,11]. Such a steady gradient leads to a permanent
buoyancy-driven flow as the density evolves along x.
Because of the linearity of the Stokes equation, this
natural convection (whose magnitude is given by Ra)

FIG. 3. (a) Normalized velocity profiles urðzÞ against z=h (um
is the maximal velocity). The continuous line is given by Eq. (4),
and the symbols indicate different experimental conditions.
(b) Maximal velocity um measured at r ¼ Ri=2 against Ra=h.
The continuous line is the theoretical estimation.

FIG. 4 (color online). (a) Sketch of a microevaporator.
Permeation across the PDMS membrane of thickness e induces
a flow from the reservoir that convects the solute in the micro-
evaporator (colors mimic the concentration gradients). This
gradient yields a buoyancy-induced flow (blue loop) that is
superimposed to the permeation-driven flow. (b) Tip of a micro-
evaporator: A steady concentration gradient in a water-glycerol
mixture is established and induces natural convection.
Fluorescent tracers (radius 500 nm) do not accumulate but
follow a permanent recirculation along x (channel width
250 �m) [8].
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is superimposed to the permeation-driven flow. Again,
buoyancy has no influence on the gradient for moderate
Ra in this confined geometry [4].

To evidence such flows and their significance on the
transport of colloids, we estimate numerically thanks to
Eqs. (4) and (5), the parameters (Ra, L0, and v0) leading to
significant permanent flows on water-glycerol mixtures
[4]. Then, we engineer the corresponding microevaporator
(L0 ¼ 7 mm, h ¼ 110 �m, width 250 �m, and v0�
0:6�m=s), and we build a steady concentration profile of
glycerol along x, from pure water up to� � 20% along the
size p � 3:4 mm in the permeation zone [4]. This steady
gradient generates a buoyancy-driven flow which is easily
evidenced when fluorescent tracers are added in the reser-
voir [Fig. 4(b)] [8]. Colloids are first convected up to the
accumulation box (x 2 ½0� p	) and then follow a perma-
nent loop due to buoyancy: They are not accumulated at
the tip of the microevaporator, as expected when dispersed
in pure water. Importantly, this experiment leads to a
permanent recirculating flow for large solutes in a nanoliter
chamber. The velocity of such flows, and the transit time
along the loop, can be precisely controlled thanks to op-
erational parameters (L0, v0, Ra, and external humidity).
Such devices may thus be interesting for original biological
assays. We can imagine, for instance, investigating the
response of cells in such a flow to a cyclic osmotic stress
driven by the concentration of the binary mixture.

Interdiffusion in a microfluidic flow.—To further dem-
onstrate the relevance of such unavoidable solutal convec-
tion in confined geometries, we briefly consider the
transverse transport of solutes between coflowing miscible
liquids in a microchannel. Figure 5 displays a microfluidic
cross-junction where an aqueous dispersion of colloids
(radius 500 nm) flowing at a rate of 25 �L=h is focused
by two streams of water (250 �L=h). The mean velocity in
the downstream channel is about 1:4 mm=s (width�
height 500� 110 �m2). Because of the very small diffu-
sivity of the tracers, we do not observe any significant

transverse transport (up to 1 cm downstream). This behav-
ior considerably differs with the case depicted in Fig. 5(b),
for the same conditions but with colloids dispersed in a
dilute water-glycerol mixture (� ¼ 3:75%). The transport
of the colloids is now strongly enhanced by buoyancy-
driven flows induced by transverse gradients within the
binary mixture. Such a result is reminiscent of recent
works by Abécassis et al. demonstrating that gradients of
salts in a similar geometry can boost the migration of
colloids, due to diffusiophoresis [12]. Yet the migration
of the colloids due to the buoyancy-driven flow is not
homogeneous over the height of the channel. The regime
investigated here also slightly differs from the conditions
for confined drying and microevaporation. Indeed, trans-
verse gradients in the binary mixture may be initially large,
and the times scales investigated are of the order of the
diffusion time over the height of the microchannel. We
cannot thus exclude that a slight reorientation of the inter-
face between the coflowing streams occurs at an early
stage, as observed for regimes where mixing by diffusion
is negligible [13,14]. A detailed investigation is needed to
fully characterize the coupling between diffusive mixing in
the binary mixture and buoyancy-driven transport of col-
loids. Theoretical approaches, as developed in Ref. [15] for
molecular diffusivity measurements in liquid metals, may
also be relevant to model such experiments. Nevertheless,
these preliminary results demonstrate the very relevance of
such flows for the transport of colloidal species in flowing
binary mixtures.
Conclusions.—Solutal gradients orthogonal to the grav-

ity lead to buoyancy-driven flows. In a confined geometry,
and for moderate Ra, these flows are often neglected, as
they do not influence the solutal gradients that generate
them. Yet, such flows still exist and can transport effi-
ciently larger solutes that do not diffuse efficiently. Such
nontrivial effects may have a significant impact for differ-
ent processes that generate concentration gradients: evapo-
ration of droplets [16], coatings [17], chemical reactions
and biological assays using coflowing microfluidic streams
[2], convection of impurities during microfluidic crystal-
lization [18,19], etc.
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