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We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and

shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves

like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead

size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2

orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number

defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The

behavior of vibrated wet and dry granular materials can then be unified by assimilating the Hookean stress

in dry media to the lubrication stress in suspensions.
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The mechanical properties of suspensions of non-
Brownian particles, i.e., with dimensions above a few
microns, control numerous natural phenomena such as mud-
slides, avalanches, and debris flows. Such suspensions are,
in addition, of prime importance in a wide range of indus-
trial applications, particularly in civil engineering. Still, the
physics of such suspensions is not totally clear, and features
such as yield stress [1,2], shear localization [3], shear thick-
ening [4], or particles migration [5] remain highly debated.

In contrast with recent work on the flow of isodense
suspensions of polystyrene beads in Newtonian fluids sub-
jected to shear flow in a Couette cell [6], the present Letter
focuses on concentrated gravitational suspensions, i.e.,
suspensions where particles are significantly denser than
the suspending fluid [7–9]. Although such a situation is
relevant for understanding natural systems, a major diffi-
culty associated with such studies is that the initial state of
the suspension at rest cannot be properly defined as the
system may be jammed far from equilibrium. As a con-
sequence, the fine details of the low shear regime remain
poorly understood as well as the mechanisms of the
jamming-unjamming transition operating when the sus-
pension starts flowing. To overcome such a drawback, we
analyze the flow behavior of our gravitational suspensions
under coupled vibrations and shear. Indeed, such a combi-
nation has proven extremely relevant for studying dry
granular media [10,11] in a wide range of shear. At low
shear, dynamics appear to be controlled by vibrations,
which yields a Newtonian behavior where granular reor-
ganization is Brownian-like [10,12,13], whereas at high
shear, dynamics can be described by a Coulombian law,
where the main interactions between grains are frictional.

In the present Letter, we then investigate in detail the
flow behavior of gravitational suspensions subjected to
coupled vibrations and shear. We show that applying any
finite amplitude vibration suppresses the yield stress of
gravitational suspensions that, under vibration, behave as
viscous fluids. Their viscosity varies with particle size,
suspending fluid viscosity, and vibration amplitude and
frequency. All variations can be rationalized by introduc-
ing a Peclet number defined as the ratio between local
lubrication and granular pressure.
We first analyze the rheological behavior of a dense

gravitational suspension (volume fraction � � 0:61) com-
posed of noncolloidal 100 �m monodisperse spherical
glass beads (Whitehouse Scientist, �p � 2400 kg=m3) im-

mersed in a Newtonian fluid (Emkarox—water mixture
�f ¼ 67:8 mPa � s, �f � 1032 kg=m3) subjected to si-

multaneous shear and vibrations and compare it to the
behavior of the same dry beads. For this, we use a stress-
imposed rheometer (AR 2000, TA Instruments) coupled
with a vibration exciter [10]. The geometry used is a four
blades vane device (10 mm radius; 30 mm length) installed
into a cylindrical baffled cell (25 mm radius; 5 mm baffle
width). The characterization cell is analogous to a virtual
Couette cell with an annular gap equal to 10 mm. The
distance between the bottom of the vane and the bottom of
the cell is also equal to 10 mm. Experiments were carried
out at imposed shear stress (from 1 to 103 Pa) under
sinusoidal vibrations. The measured shear rate ranges
from 10�3 to 4� 102 s�1. All data points were obtained
at steady state. In such a system, the mechanical vibration
stress �v can be defined as the mechanical energy per unit
volume of a harmonic oscillator of the same mass as the
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sample [10], hence �v ¼ 1=2�A2ð2�fÞ2 where � is the
density of the system (kg=m3), and A and f are the ampli-
tude and frequency of vibrations, respectively. The vibra-
tion amplitude and frequency used vary from 20 to
400 �m and from 10 to 80 Hz, respectively [14].

Figure 1 presents the evolution of the sample viscosity,
�, as a function of the applied shear stress, �, for various
values of �v for the dry [Fig. 1(a)] and wet [Fig. 1(b)]
cases. In the dry case, for �v ¼ 0 [filled symbols in
Fig. 1(a)], � remains constant for all imposed shear rates.
This regime is a Coulombian frictional one as shown by
Marchal et al. [10]. The frictional stress, �f, is thus given

by Coulomb’s law, �f ¼ �Pg, where Pg is the average

granular pressure defined by [10]:

Pg ¼ ���gz; (1)

where �� is the relative density of the beads and fluids,
� the volume fraction, g the gravitational constant
9:81 m � s�2, and z is an average height (z ¼ 0:025 m)
[10]. In the present case, for � � 0:62 and � � 0:5 [10],
the application of Coulomb’s law yields �f ¼ 182�

41 Pa, in agreement with the experimental value. For wet
granular media in the absence of vibration [filled symbols
in Fig. 1(b)], a typical yield stress behavior is observed in
agreement with previous results [6,8,9]. Application of
Eq. (1) yields a value of 103� 22 Pa, in agreement with
experimental results. The lower value compared to the dry
case is directly related to the density difference between air
and Emkarox solution [15].
�f represents a clear limit between two domains. For

� � �f, all viscosity curves follow the nonvibrated case

whatever the mechanical vibration energy. In this regime,
the flow behavior of the suspension is then fully con-
trolled by shear stress, and the system behaves as classi-
cal Brownian (e.g. [16]) or non-Brownian suspensions
[6,9,17]. To further evidence such a statement, we analyze
the dependence of �300, the suspension viscosity measured
for an applied shear stress of 300 Pa, on suspending fluid
viscosity �f [18], bead size D, and volume fraction �.

Figure 2(a) confirms that �300 is proportional to �f and

independent of bead size for sizes ranging between 49 and
530 �m. Figure 2(b) shows that, in the case of 100 �m
beads, the volume fraction variation of viscosity is well

accounted for by Quemada’s law � ¼ �fð1� �
��Þ�2 [19]

where �� is the maximum packing fraction. In the case
presented here, �� ¼ 0:68, i.e., an intermediate value be-
tween �� at rest (0.63) and �� under infinite shear (0.72)
[20,21]. In that regime, the system is controlled by the

FIG. 1 (color online). Viscosity (�) versus shear stress (�), for
various values of vibration stress (�v). (a) 100 �m dry glass
beads, � � 0:62 [10]. (b) 100 �m glass beads immersed in a
67:8 mPa:s Emkarox-water mixture, � � 0:61. Experiments
were carried out at imposed shear stress (from 1 to 103 Pa),
except for the curve at �v ¼ 0 (filled symbols) that was per-
formed at imposed shear rate (from 10�3 to 4� 102 s�1). The
dotted rectangle represents the range of values obtained for the
calculation of the frictional stress �f by Coulomb’s law.

FIG. 2 (color online). Glass beads immersed in various
Emkarox-water mixtures. (a) High shear viscosity (�300) versus
interstitial fluid viscosity (�f), for various values of bead size,

� � 0:61. (b) Evolution with volume fraction, �, of �300=�f,

D ¼ 100 �m.
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balance between cohesion stress, �f and applied shear

stress, �. The ratio of the two quantities can be used to
define a viscous Peclet number, Peshear, that scales as
�f _�=�f. Such a quantity is analogous to the Leighton

number introduced by Coussot and coworkers [8,9] to
describe the transition from a frictional to a viscous regime
in sheared dense suspensions and also to the viscous num-
ber introduced by Cassar et al. [22] to describe the rheo-
logical behavior of submarine avalanches. In contrast, the
behavior observed for � � �f is much richer. Indeed, the

suspension loses its yield stress and a viscosity plateau
appears. This constant viscosity evidences mesoscopic
motion in the system. The value of� at the plateau depends
on both vibration amplitude and frequency. The use of the
vibration stress rationalizes all effects, higher stress lead-
ing to lower viscosity (Fig. 1). Such a behavior can be
interpreted as resulting from an increase in particle mobil-
ity that, for both dry and wet materials, leads to lower
cohesion. However, the nature of interactions in both cases
is different as shown by the evolution of �0, the viscosity at
the plateau, with bead size. As shown in Fig. 3(a), in the
dry case, the low shear viscosity plateau is rather indepen-
dent of size, whereas a clear size dependence appears in the

saturated suspension [Fig. 3(b)], higher size leading to
higher viscosity. For dry materials, as previously shown
[10], local interactions can be properly described on the
basis of a Hookean approach, �dry ¼ G� where G is an

elastic modulus and � the deformation. In the saturated
suspension, the local interaction between two beads is
rather controlled by lubrication that can be dimensionally
expressed as

�lub /
�fAð2�fÞ

D
: (2)

According to such an interpretation, in addition to size
effects, changes in the viscosity of the suspending fluid
should also have a direct influence on the value of �0.
To test for such an assumption, we then used the pre-
viously mentioned Emkarox-water mixtures. As shown in
Fig. 4(a), at low shear, for constant vibration stress, an
increase in �f leads to a significant decrease in the plateau

viscosity �0. Figure 4(b) summarizes all these effects by
plotting �0 as a function of �f for various sizes and

vibration stresses. In agreement with Eq. (2), an increase

FIG. 3 (color online). Low shear viscosity plateau (�0) versus
vibration stress (�v), for various values of bead size. (a) Dry
glass beads, � � 0:62 [10]. (b) Glass beads immersed in a
67:8 mPa:s Emkarox-water mixture, � � 0:61.

FIG. 4 (color online). (a) Viscosity (�) versus shear stress (�),
for various values of interstitial fluid viscosity, for 100 �m glass
beads immersed in various Emkarox-water mixtures, � � 0:61,
�v ¼ 6:1 Pa. (b) Low shear viscosity plateau (�0) versus inter-
stitial fluid viscosity (�f), for various values of bead size and

vibration stress, � � 0:61.
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in either vibration energy or fluid viscosity or a decrease in
particle size leads to a decrease in �0.

In that context, the low shear rheological behavior of
gravitational suspensions is governed by the competition
between the granular pressure Pg [Eq. (1)], that ensures the

internal cohesion of the system and the lubrication stress,
�lub [Eq. (2)]. This stress provides more degrees of free-
dom to the particles in the same way as the shear stress
for values larger than �f. It is then relevant to define a

lubrication Peclet number, Pelub that scales as
�fAð2�fÞ

D�f
. In

energetic terms, this Peclet number compares the mechani-
cal vibration energy transmitted through viscous forces to
the internal energy of the system. Figure 5 displays a plot
of �0 as a function of Pelub. All points of Fig. 4(b) fall onto
a master curve with a slope �1, extending over more than
two decades in both Pelub and �0, which validates the
proposed approach [23].

Such a result has, to our knowledge, never been ob-
served in gravitational suspensions and opens new perspec-
tives in the study of granular media. In particular, the
influence of vibrations on gravitational suspensions rheol-
ogy may provide crucial information for understanding
natural phenomena such as landslide triggering through
earthquakes. In fundamental terms, the fact that any finite
amplitude vibration is able to fluidize a jammed system
may shed new light on the jamming-unjamming transition.
Indeed, it challenges the classical assertion that considers
that unjamming occurs only when the system is provided
with an energy larger than its cohesive energy. In that
context, a quantitative interpretation of the �1 decay ob-
served in Fig. 5 clearly deserves deeper investigation.
Indeed, if vibration increases the degrees of freedom of
the particles, an exponential behavior would have been
expected, by analogy with studies on viscosity of molecu-
lar liquids [24]. The unexpected trend observed in the
present Letter strongly suggests that the analogy between
temperature and vibration is not trivial. It is then of prime
importance to study in detail how vibration affects particles
reorganization at both the local and semilocal scale as
shown by recent experiments on load-bearing bridges [25].

It would be particularly relevant to experimentally inves-
tigate the dynamics of particles under increasing vibration
energy. This could be achieved by carrying out fast tomog-
raphy experiments such as those recently developed in
synchrotron facilities or dynamic light scattering experi-
ments currently under development.
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