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We consider (2þ 1)-dimensional topological quantum states which possess edge states described by a

chiral (1þ 1)-dimensional conformal field theory, such as, e.g., a general quantum Hall state. We

demonstrate that for such states the reduced density matrix of a finite spatial region of the gapped

topological state is a thermal density matrix of the chiral edge state conformal field theory which would

appear at the spatial boundary of that region. We obtain this result by applying a physical instantaneous

cut to the gapped system and by viewing the cutting process as a sudden ‘‘quantum quench’’ into a

conformal field theory, using the tools of boundary conformal field theory. We thus provide a demon-

stration of the observation made by Li and Haldane about the relationship between the entanglement

spectrum and the spectrum of a physical edge state.

DOI: 10.1103/PhysRevLett.108.196402 PACS numbers: 71.10.Pm, 03.67.Mn, 05.30.Pr, 73.43.�f

Topological phases of matter are gapped quantum states
which cannot be adiabatically deformed into a completely
‘‘trivial’’ gapped system such as a trivial band insulator,
without crossing a quantum phase transition. They are not
characterized by symmetry breaking but instead by certain
global topological properties such as the presence of (to-
pologically) protected edge states and/or a ground state
degeneracy which depends on the topology of the surface
on which the state resides [1]. Topological states of matter
of this kind which have been discovered in nature include
the integer and fractional quantum Hall states [2] and the
recently discovered time-reversal invariant topological in-
sulators [3–6].

Quantum entanglement is a purely quantum mechanical
phenomenon which has no classical analog. For any pure
quantum state (typically the ground state) of a system
consisting of two disjoint subsystems A and B, complete
information about the bipartite entanglement between the
two subsystems is described by the reduced density matrix.
Quantum entanglement provides an alternative character-
ization of the properties of the many-body system [7]. For
example, as discovered by Levin and Wen [8] and by
Kitaev and Preskill [9], the entanglement entropy of a
topologically ordered state in a region of linear size l in
two-dimensional position space contains a universal
l-independent term, the ‘‘topological entanglement en-
tropy,’’ which is a characteristic of the topological order
of the state. However, the topological entanglement en-
tropy does not provide a complete description of a topo-
logical state of matter, since distinct topologically ordered
states can have the same topological entanglement entropy.
More complete information about a topological state of

matter can be obtained from the eigenvalue spectrum of the
reduced density matrix, often referred to as the entangle-
ment spectrum [10]. In general, the density matrix �A

describing the entanglement between a subsystem A and
the rest of the system can be written in the form of �A ¼
e�HE , with HE a Hermitian operator. One important physi-
cal feature of the so-defined entanglement HamiltonianHE

is that its low-energy eigenstates correspond to those states
in A, appearing in the Schmidt decomposition [11] of the
initial pure state, which are most entangled with the rest of
the system. In general, HE is different from the physical
Hamiltonian of the system.
The focus of the present Letter is a remarkable observa-

tion made recently by Li and Haldane [10], and in subse-
quent works, for topological phases whose physical
Hamiltonian possesses low-energy states at an open bound-
ary (‘‘edge states’’). This includes fractional quantum Hall
states [10,12–14], noninteracting topological insulators
[15,16], and the Kitaev honeycomb model [17]. It was
found that for those systems the low-energy edge states
of the physical Hamiltonian at an actual open boundary of
system A are in one-to-one correspondence with the low-
lying eigenstates of entanglement Hamiltonian HE (i.e.,
with the most entangled states). However, except for sys-
tems which can be reduced to noninteracting fermion
problems [15–17], such a correspondence between the
entanglement spectrum and the edge state spectrum of
the physical Hamiltonian has been supported only by
numerical evidence. No general argument for the validity
of such a correspondence has been presented so far [18]. It
is the purpose of the present Letter to demonstrate the
general validity of this correspondence.
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General setup.—In this Letter, we show that, for a
generic (2þ 1)-dimensional topological state which pos-
sesses edge states described by a conformal field theory,
the entanglement Hamiltonian HE is proportional to the
Hamiltonian HL of a physical chiral (say, L-moving) edge
state appearing in an actual spatial boundary of subsystem
A, in the long-wavelength limit, and in any fixed topologi-
cal sector. For example, our conclusion applies to all the
Abelian and non-Abelian quantum Hall states described by
Chern-Simons effective field theories in the bulk [19–22].
In order to relate the entanglement spectrum and the spec-
trum of the physical edge state Hamiltonian, we consider
a bipartition of the topological state on a cylinder into
two parts A and B as shown in Fig. 1(a). The (physical)
Hamiltonian H can be written in the form

H ¼ HA þHB þHAB; (1)

whereHA andHB denote the Hamiltonians in disconnected
regions A and B, respectively, each of which has (two)
open boundaries. The term HAB couples regions A and B
across their joint boundary. For example, for a 2D gapped

tight-binding model H ¼ P
ijc

y
i tijcj realizing [23] the in-

teger quantum Hall effect, the term HAB contains all
the electron hopping terms across the boundary between
A and B.

Now we consider a deformed Hamiltonian containing a
parameter � 2 ½0; 1� (similar to Ref. [24]):

Hð�Þ ¼ HA þHB þ �HAB: (2)

By construction, Hð� ¼ 0Þ is the Hamiltonian of the two
decoupled cylinders A and B, and Hð� ¼ 1Þ is the
Hamiltonian of the whole cylinder A [ B. Since we are
interested in such topological states which possess chiral
edge states, the HamiltonianHð� ¼ 0Þwill have chiral and
antichiral edge states propagating at the boundary between
regions A and B, as shown in Fig. 1(b). When � � 0, the
term �HAB introduces a coupling between the regions A
and B. Denote the bulk gap of the Hamiltonian

H ¼ Hð� ¼ 1Þ by Eg. When the coupling � is small

enough such that the energy scale of the coupling term
�HAB is much smaller than the bulk gap Eg, the gapped

bulk states described by HA and HB are almost entirely
unaffected by the coupling term �HAB, whose main effect
is then to induce an interedge coupling between the chiral
and antichiral edge states. Since each individual edge state
is described by a chiral conformal field theory (CFT), the
theory of the two edges between regions A and B is
described by a nonchiral CFT. Thus at low energy the
coupling term �HAB between regions A and B is reduced
to a local interaction in the CFT. For simplicity, we assume
that this interaction is a relevant perturbation of the CFT in
the renormalization group (RG) sense, so that the two
counterpropagating edges will be gapped for arbitrarily
small coupling �. Thus we expect in this case the system
described by the HamiltonianHð� ¼ 1Þ to be adiabatically
connected to that described by Hð�Þ for a small but non-
vanishing value of �. In this case, the entanglement prop-
erties of Hð� ¼ 1Þ are expected to be the same as those of
Hð�Þ with a small �. The latter describes the entanglement
between the left and the right movers of the edge state
CFT. It turns out that our result still holds when � is an
(RG-)irrelevant coupling: A more detailed discussion of
this situation will be given below, as well as in the supple-
mentary material [25].
Below, we will solve this entanglement problem for the

edge state CFT, by mapping it to a problem of a quantum
quench. We then solve the latter (quantum quench) prob-
lem in the standard manner by using the work of Calabrese
and Cardy [26,27], which employs the methods of bound-
ary conformal field theory [28].
Reduced density matrix of the edge CFT.—Next, we

study the entanglement properties of the Hamiltonian
Hð�Þ for small values of �, which, as explained above,
amounts to the study of the (1þ 1)-dimensional problem
of coupled edge states:

Hedgeð�Þ ¼ HL þHR þ �Hint: (3)

Here, HL and HR denote the Hamiltonians of left-moving
(L) and right-moving (R) edge states, respectively, and
�Hint a (RG-)relevant interedge coupling. The L- and
R-moving edge states are the low-energy excitations of
the subsystem in regions A and B, respectively. Again,
the entanglement properties between the subsystems A
and B are reduced to those between left- and right-moving
(1þ 1)-dimensional edge states. If we denote the ground
state of the HamiltonianHedgeð�Þ from Eq. (3) by jGi, then
our goal is to obtain the density matrix of the L-moving
edge state subsystem defined by

�L ¼ TrRðjGihGjÞ; (4)

where TrR denotes the trace over the R-moving edge
state degrees of freedom. In general, the ground state jGi
will depend on all the details of the coupling between the

FIG. 1 (color online). (a) A topological state on a cylinder with
a bipartition into two regions A and B. (b) The deformed system
(see the text) with the coupling between A and B regions
weighted by a factor � 2 ½0; 1�. The system can be understood
as two cylinders A and B, with edge states propagating along the
boundary between A and B, coupled by an interedge coupling.
(c) For small enough �, the coupling between the gapped bulk
states can be neglected, and the problem can be reduced to an
interedge coupling problem described by a (1þ 1)-dimensional
conformal field theory with a (RG-)relevant coupling �Hint.
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R- and the L-moving edges states. However, due to the
gapless nature of Hedgeð� ¼ 0Þ describing the decoupled

edges, certain universal properties can be inferred in the
long-wavelength limit without reference to any detailed
features of this coupling.

In order to understand the entanglement properties of the
state jGi, we relate them to another problem—the ‘‘quan-
tum quench’’ problem. Consider a quantum quench of the
system composed of the coupled edges, Eq. (3). For all
times t < 0 the system is in the ground state jGi of the
HamiltonianHedgeð�0Þwith nonvanishing coupling �0 � 0

between the edges. At time t ¼ 0 the coupling �0 between
the edges is suddenly switched off, so that � ¼ 0 for t � 0.
After the quantum quench, the left- and right-moving edge
states evolve independently with the Hamiltonian
Hedgeð� ¼ 0Þ ¼ HL þHR of the decoupled edges. Space-

and time-dependent correlation functions after a sudden
quench, as above, have been studied extensively by
Calabrese and Cardy [26,27], who applied boundary CFT
to obtain general properties of such a correlation function
in the long-time and long-wavelength regime. This is
relevant for our purpose because the density matrix �L is
uniquely determined by the set of all equal-time correlation
functions of operators with support solely on the L-moving
edge:

Cðt;fxigÞ¼ hGjeitðHLþHRÞÔL;1ðx1Þ . . .ÔL;nðxnÞe�itðHLþHRÞjGi
�TrL½e�itHL�Le

itHLÔL;1ðx1Þ . . .ÔL;nðxnÞ�: (5)

(All the coordinates x1; x2; . . . ; xn reside entirely on the
L-moving edge.) In the quantum quench problem, the
ground state jGi of the coupled edge Hamiltonian
Hedgeð�0 � 0Þ represents an initial condition at time t¼0

for the evolution with the gapless (critical) decoupled edge
system Hamiltonian HL þHR at subsequent times t > 0.
This initial state can be viewed [26,27,29] as a boundary
condition on the gapless theory of the right- and left-
moving edges [30]. It can thus be described by using the
methods of boundary critical phenomena [31]. Moreover,
in the present case of a one-dimensional edge, the resulting
boundary condition can be analyzed by using the powerful
tools of boundary CFT [28]. The key result that we will use
from the theory of boundary critical phenomena is that an
arbitrary boundary condition on a gapless bulk theory will
always renormalize at long distances into a scale invariant
boundary condition [26,32,33]. In a (1þ 1) conformal
bulk theory, such as the one describing the one-
dimensional edges, any scale invariant boundary condition
must be one of a known list of conformally invariant
boundary conditions [28]. Consequently, as emphasized
in Ref. [26], in the long-wavelength limit the correlation
functions at a general boundary condition described by a
general state jGi are equal to those at a conformally
invariant boundary condition described by a state jG�i
which represents a (boundary) fixed point to which the

boundary state jGi flows under the RG. The difference
between jGi and jG�i can be represented by an imaginary
time evolution operator:

jGi ’ Z�1=2e��0ðHLþHRÞjG�i; (6)

where �0 > 0 is the so-called extrapolation length
[26,31] and stands for the RG ‘‘distance’’ of the general
boundary state jGi to the conformal boundary state jG�i.
Z ¼ hG�je�2�0ðHLþHRÞjG�i is a normalization factor.
Physically, the energy scale 1=�0 is determined by the
energy gap Eð�0Þ induced by the coupling term �0Hint

between the edges.
In a so-called rational CFT [34] such as the one under

consideration, all conformal invariant boundary states jG�i
are known [28] to be finite linear combinations of so-called
Ishibashi states [35], which have the form

jG�;ai ¼
X1
n¼0

XdaðnÞ
j¼1

jkða; nÞ; j; aiL � j � kða; nÞ; j; �aiR: (7)

Here a denotes a topological sector in the underlying
topological theory, i.e., a topological flux threading the
cylinder in Fig. 1(a), which is represented in the CFT
describing the edges by a primary state of a corresponding
conformal symmetry algebra (Virasoro or other) of con-
formal weight ha. ( �a denotes the conjugate sector and state
of conformal weight h �a ¼ ha.)
The label a runs over all possible particle types of the

topological state [34]. Here kða; nÞ ¼ 2�ðha þ nÞ=l de-
notes the momentum, where l is the circumference of the
cylinder; j ¼ 1; 2; . . . ; daðnÞ labels the elements of an or-
thonormal basis in the subspace of fixed momentum
kða; nÞ. Notice that the L- (R-) moving edge system con-
tains only excitations with positive (negative) momentum.
We note that the state in Eq. (7) is an example of a so-called
maximally entangled state. The explicit form, Eq. (7), of
the Ishibashi states jG�;ai, resulting from conformal invari-

ance, is of great help in determining the form of the
reduced density matrix �L for the L-moving edge. Upon
directly combining Eq. (6) with (7), one obtains

jGai’
X1
n¼0

e�2�0vkða;nÞ

Z1=2
a

XdaðnÞ
j¼1

jkða;nÞ;j;aiL�j�kða;nÞ;j; �aiR;

which yields the following form of the density matrix of
the L-moving edge upon tracing out the R-moving edge:

�La ¼ TrRðjGaihGajÞ

’ X1
n¼0

e�4�0vkða;nÞ

Za

XdaðnÞ
j¼1

jkða; nÞ; j;aiLhkða; nÞ; j; ajL

¼ Z�1
a P̂ae

�4�0HLP̂a: (8)

Here we have used the linear dispersion HLjk; j;aiL ¼
vkjk; j; aiL, HRj � k; j; �aiL ¼ vkj � k; j; �aiR, where v is
the edge state velocity and k stands for kða; nÞ. The label a

PRL 108, 196402 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
11 MAY 2012

196402-3



indicates that �La is an operator defined in the topological
sector corresponding to topological flux a threading the

cylinder, and P̂a is the projection operator onto that sector
of the Hilbert space of the CFT. In cylinder geometry, there
is no entanglement between different topological sectors
(denoted by different labels a).

Equation (8) is the central result of this work, which
demonstrates that the entanglement between L-moving
and R-moving edge states in a CFT induced by a relevant
coupling is always characterized by a ‘‘thermal’’ density
matrix within a fixed topological sector (or primary state in
CFT). In other words, in each topological sector the
‘‘entanglement Hamiltonian’’ HE ¼ � log�L ¼ 4�0HL þ
logZ is proportional to the Hamiltonian HL of a physical
edge up to a possible shift of the ground state energy in that
sector which ensures the proper normalization of the den-
sity matrix as a probability distribution. Our result demon-
strates not only that the excitation energies of the
entanglement spectrum are the same as those of the spec-
trum of the Hamiltonian of the edge state of the topological
system appearing (by assumption) at a physical boundary
of region A, in the long-wavelength limit modulo a global
rescaling, but also that the most entangled states are in one-
to-one correspondence with the low-energy edge states
which occur at this boundary.

Example: Free fermions.—A simple example in which
the general notions, developed in the preceding part of this
Letter, can also be illustrated by using elementary many-
body techniques is that of the 2D integer quantum Hall
state. This state can be described by a free fermion theory,
the entanglement properties of which have been studied
extensively in the literature [15,16,36]. However, it is still
helpful to present the results here as an illustration, in the
language of the much more general formulation obtained
above. The edge states of an integer quantum Hall state
with integer filling fraction � ¼ N consist of N flavors of
noninteracting chiral fermions. For simplicity, we consider
an integer quantum Hall state with filling fraction N ¼ 1,
whose edge state dynamics is governed by the Hamiltonian

HL ¼ X
k

vkcyk ck; HR ¼ �X
k

vkdyk dk: (9)

The simplest interedge coupling term is a single-particle
interedge tunneling

Hint ¼ Eg

X
k

ðcyk dk þ dyk ckÞ; (10)

with Eg the bulk gap which acts as a high-energy cutoff

scale for the edge theory. The coupled Hamiltonian
HL þHR þ �Hint is a free Fermion Hamiltonian which
can be diagonalized by a unitary transformation to

HL þHR þHint ¼
P

k;s¼�1Ek�
y
ks�ks with the gapful en-

ergy dispersion Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2k2 þ E2

g

q
. Here �k;i (i ¼ 1; 2) are

quasiparticle annihilation operators. The ground state jGi

of this gapped system is determined by the conditions
�k;ijGi ¼ 0 (i ¼ 1; 2). One obtains [25] the following ex-

plicit expression for jGi (unnormalized):

jGi ¼ e�He jG�i;
jG�i ¼ exp

�
�X

k>0

ðcyk dk þ dy�kc�kÞ
�
jGLi � jGRi;

(11)

and He ’ 1
2Eg

ðHL þHRÞ in the long-wavelength limit. The

operators cyk dk and dy�kc�k with k > 0 create quasiparticle

excitations of the system of the two edges, so that jG�i is an
equal-weight superposition of all quasiparticle excitation
states in the massless theory; this is nothing but the
Ishibashi state for the free fermion CFT (in the sector
without topological flux). Thus, with this form of He, we
recover correctly (in the long-wavelength limit) the general
relation (6); the extrapolation length is �0 ¼ 1=2Eg. As

expected, the energy scale 1=�0 is determined by the
energy gap 2Eg of particle-hole excitations.

Discussion.—We now briefly discuss the situation with
� an (RG-)irrelevant coupling by considering the example
of a Laughlin 1=m state whose edge theory is described by
a Luttinger liquid [37]:

L ¼ m

2�
ð@t � v@xÞ�L@x�L þ m

2�
ð�@t � v@xÞ�R@x�R

þ � cos

�
1

R
ð�L ��RÞ

�
; (12)

with � the interedge tunneling. The electron tunneling
corresponds to R ¼ 1, which is irrelevant. Therefore an
infinitesimal � does not open a gap. A gapped state can be
induced by a sufficiently large � > �c. However, as is well
known, a marginal coupling term g@��L@

��R can be

added which can tune the scaling dimension of the electron
tunneling � until it becomes relevant at some gc. Our
earlier argument applies to g > gc, in which case the
entanglement spectrum was shown to be that of a chiral
Luttinger liquid. Since tuning of g preserves the gap of the
pair of ð1þ 1ÞD edge states, the entanglement spectrum at
g ¼ 0 must be adiabatically connected to that at g > gc,
which means that it must also be a chiral Luttinger
liquid. More details are discussed in the Supplemental
Material [25].
Our analysis also applies to other systems described by

coupled CFTs, besides topological states. In particular, it
provides an explanation of the recent numerical and ana-
lytical results on the entanglement spectrum of coupled
spin chains [38]. Moreover, it may be interesting to try to
apply our approach to the quantum quench problem and the
dynamics of Stopo in topologically ordered systems [39].

Finally, since the relationship between a general boundary
state and a scale invariant boundary condition which is the
end point of the RG flow also holds for higher-dimensional
scale invariant bulk theories [31], we expect that our result
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will generalize to higher-dimensional topological states,
such as (3þ 1)-dimensional topological insulators, and
especially the fractional topological insulators [40], which
cannot be analyzed by using free fermion methods [15,16].
Details of this generalization will be left for future work.

In closing, wewould like to note that the reduced density
matrix (8) in the topological sector ‘‘a’’ yields an entan-
glement entropy of the form S ¼ �Trð�L log�LÞ ¼ 	L�
Stopo, with Stopo ¼ logðD=daÞ the topological entangle-

ment entropy [8,9]. Here da is the quantum dimension of

the quasiparticle of type a, and D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

ad
2
a

q
is the total

quantum dimension. This relation to the topological en-
tropy has been noticed in Ref. [9], though in that work
the form of the density matrix as in our Eq. (8) was taken
as an assumption [41]. The present Letter proves this
assumption.

This work was supported, in part, by the NSF under
Grants No. DMR-0706140 (A.W.W. L.) and No. PHY05-
51164 (H.K.), JSPS (HK.), and Alfred P. Sloan
Foundation (X.-L. Q.).
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