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Nonlinear response of a Mott insulator to external electric field, corresponding to dielectric breakdown

phenomenon, is studied within of a one-dimensional half-filled Hubbard model. It is shown that in the

limit of nearly spin-polarized insulator the decay rate of the ground state into excited holon-doublon pair

can be evaluated numerically as well to high accuracy analytically. Results show that the threshold field

depends on the charge gap as Fth / �3=2. Numerical results on small systems indicate on the persistence

of a similar mechanism for the breakdown for decreasing magnetization down to unpolarized system.
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The nonlinear response to external fields and more
general nonequilibrium properties of strongly correlated
electrons and Mott insulators in particular [1] are getting
more attention in recent years, also in connection with
powerful novel experimental techniques, e.g., the pump-
probe experiments on Mott insulators [2], as well as novel
systems, the prominent example being the driven ultracold
atoms within the insulating phase [3]. In this connection,
one of the basic phenomena to be understood is the dielec-
tric breakdown in Mott insulators, studied experimentally
in effectively one-dimensional (1D) systems more than a
decade ago [4]. The concept of Landau-Zener (LZ) single-
electron tunneling [5,6] as a standard approach to dielectric
breakdown of band insulators [7] is not straightforward
to generalize to correlated electrons [8–10]. Theoretical
efforts have been so far restricted to the prototype
Hubbard model at half-filling. In 1D numerical approaches
have given some support to analytical approximations for
the most interesting quantity being the threshold field Fth

and its dependence on the charge gap � [9], typically
revealing a LZ-type dependence Fth / �2. Different
dependence is found numerically within the dynamical-
mean-field-theory approach [11] as relevant for high
dimensions D � 1.

In this Letter we approach the problem of a dielectric
breakdown from a partially spin-polarized Mott insulator.
We use the fact that the ground state (g.s.) of the 1D
Hubbard model is insulating at any spin polarization with
the charge gap modestly dependent on the magnetization
m. In particular, a single spin excitation in fully polarized
system m� 1=2, i.e. �S ¼ 1 state, can be studied exactly
numerically as well as to high accuracy analytically. The
relevant mechanism for the decay of the g.s. under constant
external field F is the creation of holon-doublon (HD) pair.
We show that due to the dispersionless g.s. the similarity to
the LZ tunneling is only partial and leads to a different

scaling Fth / �3=2. Furtheron we study numerically on
small systems also the model with �S > 1, m< 1=2 in a
finite field F. Results indicate that the decay mechanism

remains qualitatively and even quantitatively similar at
polarizations m< 1=2, in particular, for larger �.
We study the prototype 1D Hubbard model,

H ¼ �t
X
i�

ðei�cyiþ1;�ci� þ H:c:Þ þU
X
i

ni"ni#; (1)

with periodic boundary conditions (PBC) where cyi�, ci�
are creation (annihilation) operators for electrons at site i
and spin � ¼" , # . The action of an external electric field F
is induced via the Peierls phase� (vector potential) and its

time dependence, i.e. _�ð�Þ ¼ e0Fð�Þa0=@. Furtheron we
use units @ ¼ e0 ¼ a0 ¼ 1 as well as put t ¼ 1 defining the
unit of energy. In such a model we investigate finite sys-
tems of length L at half-filling Nu þ Nd ¼ L in general at
finite total spin, Sz ¼ ðNu � NdÞ=2 and magnetization
m ¼ Sz=L.
Let us first consider the problem of a single overturned

spin, i.e., �Sz ¼ L=2� Sz ¼ 1. Here, wavefunctions
j’jmi correspond to an empty site (holon) at site j and a

doubly occupied site (doublon) at site m. Taking into
account the translational symmetry of the model (1) with
PBC [even with time-dependent �ð�Þ] at given (total)

momentum q ¼ 2�mq=L the relevant basis is j�l
qi ¼

ð1= ffiffiffiffi
L

p ÞPje
iqjj’j;jþli, l 2 ½0; L� 1�. At fixed � adiabatic

eigenfunctions can be then searched in the form jc i ¼P
jdjj�j

qi leading to the eigenvalue equation,

� 1

U
¼ 1

L

X
q0

1

E�Uþ 2½cosðq0 ��Þ þ cosðq0 ��� qÞ� :

(2)

In the limit L ! 1 the g.s. energy E0 representing the
holon-doublon (HD) bound state can be expressed explic-

itly as E0 ¼ U� ½U2 þ 16cos2ðq=2Þ�1=2. We note that (in
spite of the q-dependence) g.s. states for all q are non-
conducting since from Eq. (2) it follows that the charge
stiffness D0 / @2E0=@�

2 ! 0 for L ! 1. On the other
hand, excited states form a continuum with lower edge at
E1 ¼ U� 4 cosðq=2Þ.
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Since�ð�Þ conserves total qwe further on consider only
solutions within the q ¼ 0 subspace representing the ab-

solute g.s. wave function j0i with d0j ¼ Ae��jjjei�j and

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
tanh�

p
. Here, the charge gap � ¼ E1 � E0 and the

related g.s. localization parameter � are given by

� ¼ �4þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ 16

p
¼ 4ðcosh�� 1Þ: (3)

When we consider the time-dependent �ð�Þ we have to
deal at finite L with adiabatic states Enð�Þ as, e.g., shown
in Fig. 1 for finite L. At finite L � 1=� E0 is essentially
�-independent but the same holds as well for lowest
excited states En, n * 1 which makes an usual application
of two-level LZ approach not straightforward to apply. If
we suppose that due to field F > 0 the transition probabil-
ity between neighboring excited states is high (neglecting
finite size gaps between them) excited states are well

represented by ’free’ HD pair states with dkj ¼ eikj=
ffiffiffiffi
L

p
,

�k ¼ U� 4 cosð�� kÞ, k ¼ 2�mk=L. As shown further
relevant transitions due to time-dependent �ð�Þ happen to
effective states jki with jmkj � 1 since the g.s. j0i is well
localized.

Let us consider the decay of the g.s. j0i after switching
constant field Fð� > 0Þ ¼ F, � ¼ F�. We present an
analysis for the initial decay where most weight is still
within the g.s., i.e. ja0ð�Þj � jan�0ð�Þj. In such case the
excited state amplitude time-dependence anð�Þ is given by

anð�Þ ¼ �F
Z �

0
d�0�nð�0Þ exp

�
i
Z �0

0
!nð�00Þd�00

�
; (4)

where �n ¼ hnj@=@�j0i and !nð�Þ ¼ Enð�Þ � E0.
Analytically progress can be made by using effective

HD states jki as approximate excited states with !kð�Þ ¼
�k � E0 ¼ 4ðcosh�� cos�Þ; � ¼ F�� k. By using the
relation

hkj0i!k ¼ hkjH0 þU�Hj0i ¼ Uhkjn0#j0i ¼ UA=
ffiffiffiffi
L

p
;

(5)

where H0 denotes only kinetic term in Eq. (1), one can
express �k in Eq. (4) as

�k ¼ hkj @

@�
j0i ¼ @

@�
hkj0i ¼ UAffiffiffiffi

L
p @!�1

k

@�
: (6)

Here, we can already realize some essential differences to
the usual concept of LZ tunneling, i.e., �k and Eq. (4) do
not favor transitions to lowest lying excited state but rather

to jk��j � �=
ffiffiffi
3

p
, hence the reduction to a two-level

problem is not appropriate.
The rate of akð�Þ following from Eqs. (4) and (6) is not

steady. Since we are interested in low F we average it over
the Bloch period �B ¼ 2�=F to get �a ¼ akð�BÞ which is
approximately the same for majority of k (fixing here
k ¼ �),

�a ¼ �AUffiffiffiffi
L

p
Z �

��
d�

�
1

!�ð�Þ
�0
exp

�
i

F

Z �

��
d�0!�ð�0Þ

�

(7)

� iAU

F
ffiffiffiffi
L

p
Z �

��
d� exp

�
i

F

Z �

��
d�0!�ð�0Þ

�
; (8)

after per partes integration of Eq. (7) and neglecting the
first fast oscillating part, smaller also due to an additional
prefactor F. Final simplification for small F can be made
by replacing cosh�� cos�� �2=2þ�=4 and conse-
quently extending integrations in Eq. (8) to � ¼ �1.
This leads to an analytical expression for the decay rate
�, defined by ja0j2 � expð���) where � ¼ Lj �aj2=�B,

� ¼ �3=2Bð�Þ
3�F

K2
1=3

� ffiffiffi
2

p
�3=2

3F

�
� Bð�Þffiffiffi

8
p exp

�
�ð2�Þ3=2

3F

�
;

(9)

where K1=3ðxÞ is the modified Bessel function and Bð�Þ ¼
�ð�þ 8Þ3=2=ð�þ 4Þ, and the last exponential approxima-
tion is valid for small enough �. The main conclusion of

the analysis is that � in Eq. (9) depends on �3=2=F unlike
usual LZ theory applications [8,9] yielding �2=F. As the
threshold field is usually defined with the expression � /
expð��Fth=FÞ, Eq. (9) directly leads Fth ¼ ð2�Þ3=2=ð3�Þ.
It is straightforward to verify the validity of approxima-

tions for Nd ¼ 1 via a direct numerical solution of
the time-dependent Schrödinger equation (TDSE) with
� ¼ F� within the full basis at q ¼ 0 and finite but large
L > 100. Time dependence of the g.s. weight ja0ð�Þj2 is
presented in Fig. 2 for typical case U ¼ 4 and different
fields F ¼ 0:2–0:5. Results for the case of an instantaneous
switching Fð� > 0Þ ¼ F (shown for F ¼ 0:5) reveal some
oscillations (with the frequency proportional to the gap �)
but otherwise clear exponential decay with well defined �.
In order to minimize the fast-switching effect we use in
Fig. 2 and further on mostly smooth transient [11], i.e.,
field increases as Fð� < 0Þ ¼ F expð3�=�BÞ to its final
value Fð� > 0Þ ¼ F.
In Fig. 3 we compare results for � as obtained via three

different methods: (a) direct numerical solution of TDSE,
(b) analytical approximation with an average decay rate
into free HD states, numerically integrating Eq. (7), and
(c) the explicit expression (9) where additional simplifica-
tion of the parabolic dispersion of excited states is used.
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FIG. 1. Energy levels En (in units of t) vs phase � in the
system with L ¼ 21 sites and U ¼ 4. Thick line represents the
g.s. and the effective holon-doublon pair state dispersion.
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The agreement between different methods is satisfactory
essentially within the whole regime of small � and devia-
tions between analytical and numerical results become
visible only for large �� 0:1. Moreover, results confirm
the expected variation ln� / 1=F essentially in the whole
investigated range of F.

One can assume that a similar mechanism of the dielec-
tric breakdown via the decay into free HD pairs remains
valid at finite deviations Nd > 1 and m< 1=2. In order to
test this scenario we perform the numerical solution of
TDSE for the model, Eq. (1), with the finite field Fð�Þ.
Calculation for all Sz sectors covering the whole regime
0 � m< 1=2 are performed on finite Hubbard chains with
up to L ¼ 16 sites using the Lanczos procedure both for
the determination of the initial g.s. wave function j0i as
well as for the time integration of the TDSE [12] within the
full basis for given quantum numbers Nd, Nu, q reaching
up to Nst � 107 basis states. We use everywhere smooth
transient for the field Fð�Þ. Since the decay rate of the
g.s. weight ja0j2 is expected to scale with the number of
overturned spins Nd the relevant quantity to follow and
compare is ð1=NdÞ lnja0j2ð�Þ.

In Fig. 4 we present numerical results for time depen-
dence of normalized g.s. weight lnja0j2=Nd as obtained
via a direct solution of the TDSE for L ¼ 16 with the
whole range of magnetization 1=2>m � 0 (relevant

1 � Nd � L=2) for two cases of U ¼ 4, 10, respectively,
and the span of appropriate fields F. Examples are chosen
such to represent charge gap (for a single HD pair) being
small �� 1:3<W and large �� 6:5>W, respectively,
relative to the noninteracting bandwidth W ¼ 4.
The main conclusion following from Fig. 4 is that the

g.s. weight ja0j2 indeed decays proportional to Nd con-
firming the basic mechanism of the field-induced creation
of (nearly independent) HD pairs. The decay rate � defined
as ja0j2 / expð��Nd�Þ is only moderately dependent on
Nd andm. Results confirm that � is essentially independent
of Nd in well polarized systems with m � 1=4, which is
compatible with independent decay into low concentration
of HD pairs. For larger U ¼ 10 in Fig. 4(b) the invariance
of � extends even to unpolarized situationm ¼ 0 (Nd=L ¼
1=2) for intermediate fields F � 2:2.
There are some visible deviations at m � 1=4 for weak-

est fields both in Fig. 4(b) for F ¼ 1:6 and even more for
smaller U ¼ 4 and F ¼ 0:3 in Fig. 4(a), indicating on
larger � and correspondingly faster decay of unpolarized
g.s. with m ¼ 0 relative to nearly saturated m� 1=2. Part
of this enhancement of � can be attributed to the depen-
dence of the charge gap on the magnetization �ðmÞ.
The thermodynamic (L ! 1) value �0 ¼ �ðm ¼ 0Þ is

known via the Bethe Ansatz solution �0 ¼ ð16=UÞ�R1
1 dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
= sinhð2�x=UÞ [13,14]. Values for �ðm�

1=2Þ as given by Eq. (3) are somewhat larger than �0 with
the relative difference becoming more pronounced for
U < 4. Still taking into account actual �ðmÞ some en-
hancement seems to remain at m� 0 at least for weaker
fields F and smaller U. This could indicate that the decay
into HD pairs are not independent processes but correla-
tions due to finite concentration of Nd=L enhance decay.
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FIG. 2 (color online). Ground state weight lnja0j2 vs time
�=�B for U ¼ 4 and different fields F ¼ 0:2–0:5. For F ¼ 0:5
comparison of results for smoothly and instantaneously switched
Fð�Þ is presented while for F < 0:5 only smooth switching is
used.
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FIG. 4 (color online). Normalized g.s. weight ð1=NdÞ lnja0j2
vs time �=�B for (a) U ¼ 4 and fields F ¼ 0:3, 0.6, 0.8,
(b) U ¼ 10 and F ¼ 1:6, 2.2, 2.6, for various spin states 1 �
Nd � L=2.
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FIG. 3 (color online). Ground state decay rate � (log scale) vs
1=F for U ¼ 4 as evaluated by direct numerical solution of
TDSE (full line), decay into free HD states, numerically inte-
grating Eq. (7) (dotted), and analytical expression, Eq. (9)
(dashed).
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Finally, let us consider the threshold field for the decay
Fth as defined by � / expð��Fth=FÞ. We present results in
Fig. 5 for Fth as function of the gap �. To extract Fth vs �
we use numerical data for �ðFÞ obtained from numerical
ja0j2ð�Þ as, e.g., shown in Figs. 2 and 4. For the reference
charge gap�ðmÞwe use form� 1=2 andm ¼ 1=4 Eq. (3),
while form ¼ 0 we use exact �0. Some deviation between
m� 1=2 and m ¼ 1=4 results can be still attributed to
actually slightly smaller gap for the latter magnetization.
For comparison we plot also the analytical result emerging

from Eq. (9), Fth / �3=2, as well as the dependence follow-
ing from the LZ approach [9] with Fth ¼ �2=8. From
Fig. 5 we conclude that the general trend Fthð�Þ is quite
well represented by the single HD pair result which de-
viates significantly from the LZ dependence at least for
larger �> 6. At the same time, we should note that our
numerical results in the range 1< �< 2:1 agree well with
data analyzing numerically the g.s. decay using the time-
dependent density-matrix renormalization group method
(at m ¼ 0) for the same model but bigger L� 50 [9].

In conclusion, we have presented an analysis of the
dielectric breakdown within the Mott-Hubbard insulator
starting from a spin-polarized ground state. Such an ap-
proach has clearly an advantage since the problem can be
solved up to desired accuracy numerically but as well
captured analytically. As such the situation can serve at
least as well controlled test for more demanding situations
of an arbitrary magnetization.

The case of a nearly polarized stateNd ¼ 1 describes the
mechanism of the field-induced decay of the g.s. into single
HD pair. Differences to usual LZ-type approaches are: a)
the g.s. is localized and dispersionless, b) the transition is
not between two isolated levels but rather to a continuum,
moreover it follows from Eqs. (4) and (6) that matrix
elements do not favor transitions to lowest excited states,
c) exact excites states can be approximated by effective
free HD states with dispersion that is unlike in LZ appli-

cations not hyperbolic, e.g., !k / ðk2 þ �2Þ1=2 but rather
parabolic !k / k2 þ �2 which is presumably the main
origin for qualitatively different behavior of the threshold

field Fth / �3=2 which is a final manifestation of the dis-
tinction to usual LZ applications. However there are some
similarities. In particular the analytical expression for the
average transition rate, Eq. (8), where matrix element is
integrated out, appears analogous to two-level problem and
ready for phase-integral transformation into imaginary
plane as used originally by Landau [5] then generalized
[15,16] and applied also to breakdown problem [10,17].
Still it is straightforward to verify that for the levels under
consideration !k do not satisfy criteria for its application,
but the analogy rather emerges through the application of
the steepest descent approximation to Eq. (8).
The picture of the decay of the driven Mott insulator into

HD pairs remains attractive for magnetization approaching
the unpolarized g.s. There seem to be two characteristic
length scales controlling the mechanism, the HD pair
localization length � ¼ 1=� and the Stark (Bloch) local-
ization scale LS ¼ 8=F. Our results for magnetization
approaching the unpolarized case indicate that for larger
� (small �) and well localized HD pairs the mechanism of
decay into nearly independent HD pairs remains at least
qualitatively valid. Nevertheless, we find indications that
for smaller � and weaker F (larger LS), the decay is
enhanced, i.e., pointing into the direction of more collec-
tive driven excitations favored also in the interpretation of
experiments [4]. It should be pointed out that the phenome-
non of HD pair generation is not particularly specific to 1D
systems discussed here but can be generalized to higher
dimensional nearly polarized Mott insulators as well.
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FIG. 5 (color online). Threshold field Fth vs charge gap � for
different magnetizations m� 1=2 (given by Nd ¼ 1) and m ¼
1=4, 0 as obtained numerically for L ¼ 16. Full curve (HD)
represent the analytical approximation, Eq. (9), while the dashed
curve is the LZ approach result from Ref. [9].
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