
Bose Gases near Unitarity

Weiran Li and Tin-Lun Ho

Department of Physics, The Ohio State University, Columbus, Ohio, 43210, USA
(Received 27 January 2012; published 7 May 2012)

We study the properties of strongly interacting Bose gases at the density and temperature regime when

the three-body recombination rate is substantially reduced. In this regime, one can have a Bose gas with all

particles in scattering states (i.e., the ‘‘upper branch’’) with little loss even at unitarity over the duration of

the experiment. We show that because of bosonic enhancement, pair formation is shifted to the atomic side

of the original resonance (where scattering length as < 0), opposite to the fermionic case. In a trap, a

repulsive Bose gas remains mechanically stable when brought across resonance to the atomic side until it

reaches a critical scattering length a�s < 0. For as < a�s , the density consists of a core of upper branch

bosons surrounded by an outer layer of equilibrium branch. The conditions of low three-body recombi-

nation require that the particle number N < 1:024ðT=!Þ5=2 in a harmonic trap with frequency !.

DOI: 10.1103/PhysRevLett.108.195301 PACS numbers: 67.10.Ba

One of the most fascinating aspects of quantum gases is
the role of strong interaction, which is generated by bring-
ing the system close to a Feshbach resonance [1]. The
scattering between particles near resonance leads to a
very large negative or positive s-wave scattering length
as, causing strong attraction or repulsion between atoms in
scattering states. In the case of fermions, preparing the
system on the atomic side of the resonance (as < 0), the
ground state of the system exhibits BCS-BEC crossover as
the system is brought across the resonance to the molecular
side (as > 0) [2]. In contrast, a repulsive Fermi gas is
metastable, as fermions with positive scattering length
can form bound states (Feshbach molecules) through
three-body recombination. Once Feshbach molecules are
formed, they can decay into deep bound states through
collisions, which leads to atom loss.

In the two few years, there have been active experimen-
tal studies on strongly repulsive fermions, driven by the
quest of Stoner ferromagnetism [3]. While it is now shown
that ferromagnetism is absent in repulsive fermions [4],
many earlier experiments performed over a wide range of
physical conditions all show similar behavior in atom loss
[5,6]. Moreover, an early experiment [7] has clearly dem-
onstrated that the energy density exhibits a maximum near
resonance on the molecular side of the resonance, which is
found to be caused by Pauli blocking on the formation of
bound pairs [8].

In the case of Bose gases, attractive interactions will
cause mechanical instability at low temperatures. Thus,
most studies focus on repulsive Bose gases. However,
like repulsive Fermi gases, repulsive Bose gases are only
metastable. For weak interactions, the collision rate due to
three-body recombination (�3 ¼ �n�1dn=dt) is �3 ¼
cð4�@as=mÞnðna3sÞ, where c is a dimensionless constant
[9], while the two-body collision rate is �2 ¼ na2sv, where
v is the typical velocity of the bosons. For weak repulsion,

n1=3as � 1, �3 is sufficiently low that the system is

essentially free of molecules. In the last two years, there
are increasing number of experiments on strongly repulsive
Bose gases at low temperatures [10–12]. However, at low
temperatures, �3 increases rapidly in the strongly repulsive

regime, i.e., n1=3as > 1. This leads to severe atom loss as
the system approaches resonance, and the system is far
from equilibrium. While one can explore strong interaction
effects by bringing the system quickly in and out of the
strongly interacting region, it is not clear how to define
equilibrium properties in such situations.
The situation is different at higher temperatures and

lower densities, i.e., lower fugacities. At temperatures

T > Tc, we have v� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p � h=ðm�Þ, where Tc is
the BEC transition temperature, and � ¼ h=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�mkBT

p
is

the thermal wavelength. Close to unitarity, as in �2 and �3

is replaced by � in this temperature regime, and we have
�2 ¼ ðkBT=@Þðn�3Þ, and �3 ¼ CðkBT=@Þðn�3Þ2, where

C ¼ 9
ffiffiffi
3

p
=�� 4:96 [13]. As density drops, �3 will even-

tually fall below �2. And in the presence of a trap, the
spatially averaged rate of total particle loss,
�N�1dN=dt ¼ R

dr�3n=
R
drn ¼ h�3iave, will fall below

the trap frequency !, where h::iave means spatial average.
In the density and temperature regime (referred

to as ‘‘low-recombination’’ regime) where �3 < �2,
h�3iave <!, or

n�3 � 1; �n�3 < C�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!=kBT

q
; (1)

where �n2 � R
n3=

R
n, very fewmolecules are formed even

at unitarity during the time when the Bose gas reaches
global equilibrium through two-body collisions. We can
then reach an equilibrium state where the bosons are in
scattering states even though the system can accommodate
Feshbach molecules. This ‘‘low-recombination’’ regime
has recently been realized by Salomon’s group at ENS
[14]. In this Letter, we shall point out a number of surpris-
ing properties of strongly interacting Bose gases in this
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low-recombination regime. We find that (I) Bose statistics
enhances pair formation. As a result, molecule formation
in a homogenous Bose gas is shifted to the atomic side
(as < 0), in contrast to fermions, where the shift is to the
molecular side (as > 0) due to Pauli blocking [8]. The
energy change of the system when making transition
from the upper to lower branch (defined later) is substantial
even at temperatures as high as 10Tc.

(II) In a trap, when a repulsive Bose gas is brought across
resonance in the low-recombination regime, it remains
stable even on the atomic side (as < 0), but up to a critical
value a�s < 0, and its density consists of a metastable
‘‘upper branch’’ core surrounded by an outer layer of
bosons in thermodynamic equilibrium. Both regions are
molecule free. The system will suffer mechanical instabil-
ity for as > a�s .

(III) The conditions for low-recombination at unitarity
[Eq. (1)] and mechanical stability constrain the total num-
ber of particles in a trap. In order to observe the phenomena

in (II), we need N < �N�, N� ¼ ðkBT=@!Þ5=2, where the
constant � ¼ 1:024. For an estimate at T ¼ 1 �K, ! ¼
2�ð250Þ sec�1, we have N� � 6:5� 104.

(A) Homogenous upper branch Bose gas.—We first
study the homogenous repulsive Bose gases that are free
of molecules. Such system will be referred to as a ‘‘upper
branch’’ Bose gas, and is a good approximation of a Bose
gas in the low-recombination regime. In contrast, the equi-
librium state of a Bose gas consisting of both atoms and
molecules will be referred to as the ‘‘lower branch’’ or
‘‘equilibrium branch.’’ To study the upper branch Bose gas,
we use a generalized Nozieres–Schmitt-Rink (NSR)[15]
method recently developed by one of us (TLH) for the
upper branch Fermi gas [8]. (We set both @ and kB to 1 from
now on). It is straightforward to see that the equation of
state is identical to that of a Fermi gas, except that all the
Fermi functions are replaced by the Bose distribution

functions nBð!Þ ¼ 1=ðe!=T � 1Þ. The result is nð�; TÞ ¼
noð�; TÞ þ �nscðT;�Þ þ �nbdðT;�Þ, where noðT;�Þ ¼P

knBð�kÞ is the density of the ideal Bose gas;
�nscðT;�Þ and �nbdðT;�Þ are the interaction contribu-
tions of the scattering states and the bound states, respec-
tively,

�nscð�; TÞ ¼ � 1

�

X
q

Z 1

!ðqÞ
d!

�
nBð!Þ@�ðq; !Þ

@�
; (2)

�nbdð�;TÞ ¼ � 1

�

X
q

nB½!bðqÞ� @!bðqÞ
@�

; (3)

where !ðqÞ � q2=4m� 2�. �ðq; !Þ is the phase of the
inverse T-matrix in a medium whose explicit expression is
given in Ref. [8]. It arises from the branch cut of the
T-matrix (i.e., the scattering states). !bðqÞ is the pole of
the T-matrix (i.e., the bound states), and is the solution of
the equation

� m

4�as
þ 1

�

X
k

�
�ðk;qÞ

!�!ðqÞ � k2

m

þ 1
k2

m

�
¼ 0; (4)

where �ðk;qÞ ¼ 1þ nBð�q=2þkÞ þ nBð�q=2�kÞ describes

the bosonic enhancement of the medium on pair fluctua-
tions, �k ¼ �k ��, and �k ¼ k2=2m.
As pointed out in Ref. [8], the NSR results Eqs. (2) and

(3) reduce to the scattering state and bound state contribu-
tions in the rigorous virial expansion in the low fugacity
limit. The equation of state for the upper branch at lower
temperatures therefore corresponds to ignoring �nbd,
whereas that of the equilibrium state (the lower branch)
includes both �nsc and �nbd;

nupperðT;�Þ ¼ noðT;�Þ þ �nscðT;�Þ (5)

nequilðT;�Þ ¼ noðT;�Þ þ �nscðT;�Þ þ �nbdðT;�Þ: (6)

With this prescription, we can calculate all the thermody-
namic properties of these branches [16]. Our results are
summarized in the next two sections.
(B) Phase diagram of homogenous upper branch Bose

gas.—It is useful to define for bosons an analog of ‘‘Fermi’’

momentum and Fermi temperature as kF � ð6�2nÞ1=3 and
TF � k2F=2m; and TF=Tc ¼ 2:3, where Tc ¼ 3:3n2=3=m is
the BEC transition temperature. The phase diagram of the
upper branch Bose gas for fixed n is shown in Fig. 1. The
corresponding behavior of the energy density at T ¼ 4TF

is shown in Fig. 2.
The dashed purple line in Fig. 1 corresponds to the state

of zero compressibility 	 ¼ 0, where 	 ¼ dn=d�. While
the decrease in 	 as as > 0 increases is similar to that of
Fermi gas, this phase diagram differs from that of Fermi
gas in a fundamental way, as the transition from upper to
lower branch is shifted to the atomic side of the resonance,
(as < 0). See Figs. 1 and 2. In other words, the stability of
the upper branch Bose gas extends into the atomic side.
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FIG. 1 (color online). The phase diagram of a homogeneous
upper branch Bose gas with fixed density n: At the blue curve
that separates the upper and lower branch, the energy density
undergoes a discontinuous jump as shown in Fig. 2. The purple
dashed curve represents a state with 	 ¼ 0. In the ‘‘unstable’’
region, the number equation for chemical potential does not have
a solution.
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This shift is due to Bose statistics. To see this, we note that
the condition for determining the emergence of a bound
state in the medium [i.e., Eq. (4)] can be rewritten as

m

4�aeffðq; !Þ ¼ 1

�

X
k

�
1

!�!ðqÞ � k2

m

þ 1
k2

m

�
; (7)

1

aeffðq; !Þ ¼ 1

as
� 4�

�

X
k

�
nBð�q=2þkÞ þ nBð�q=2�kÞ

mð!�!ðqÞÞ � k2

�
;

(8)

which is the condition for emergence of bound state in
vacuum with an effective scattering length aeffðq; !Þ. In
vacuum, aeff reduces to as, and the bound state occurs
when a�1

s � 0. In a Bose medium, a bound pair with total
momentum q occurs when aeffðq; ! ¼ !ðqÞÞ � 0, or
when �a�1

s 	 �a�1
c ðqÞ, where

1

acðqÞ ¼ � 4�

�

X
k

nBð�q=2þkÞ þ nBð�q=2�kÞ
k2

< 0: (9)

In other words, if one approaches the resonance from the
atomic side, a bound pair with total momentum q will
emerge at scattering length acðqÞ< 0, which is on the
atomic side of the original resonance. The values of
�1=acðqÞ at different q’s are shown in Fig. 2. That
�1=acðqÞ reduces to 0 as q ! 1 is because the effect
from the bosonic medium becomes less important for large
q, as in fermion case [8]. The boundary between the

equilibrium branch and the upper branch corresponds to
the emergence of bound pairs with q ¼ 0, and is given by
a�1
c ðq ¼ 0; T;�Þ ¼ 0, where � is constrained by the total

density n. Finally, we note from Fig. 2 that as one crosses
the resonance from the molecular to the atomic side, the
energy change at the boundary between the upper and
lower branch is substantial even at T ¼ 4TF ¼ 9:2Tc.
(C) Upper branch Bose gas in a trap.—In a trap, the

density profile within local density approximation (LDA)
is given by nðrÞ ¼ nupperð�� VðrÞ; TÞ, where � is the

chemical potential at the center of the trap. A global
view of the density profile can be obtained from the phase
diagram in the ð�=TÞ-ð�=asÞ plane, Fig. 3, where � is the
thermal wavelength. The density profile along a radial
direction starting from the trap center corresponds to a
vertical line emerging from ��=T upward. A trapped
Bose gas is therefore specified by a point (� �=as,
��=T) on this diagram.
Figure 3 describes the behavior of the Bose gas as it is

swept from the molecular to the atomic side. Three regions
are found from the equation of state: (i) the equilibrium
branch, (ii) the upper branch, and (iii) a region of mechani-
cal instability where 	 < 0. (	 > 0 for both (i) and (ii)).
The boundary between (i) and (iii), and that between (ii)

and (iii) will be denoted as �ðbÞðTÞ and �ðaÞðTÞ, respec-
tively. �ðaÞðTÞ is the boundary of zero compressibility,

	 ¼ 0. �ðbÞðTÞ is the boundary where bound pairs with
zero momentum begin to form.
The unstable region (iii) intervenes between branches (i)

and (ii). Because of this intervention, any density profile
whose center starting from the upper branch on the atomic
side will pass through the unstable region, and is therefore
unstable. The width of the unstable region is�r ¼ ra � rb,
where ra and rb are given by �a ¼ �� VðraÞ and �b ¼
�� VðrbÞ. As seen in Fig. 3, the difference �b ��a (and
hence �r) becomes very small close to resonance. Should

�r be less than interparticle spacing, i.e., �r < nð �rÞ�1=3,
which occurs at a critical ratio �=a�s for given �=T, ra and
rb can be viewed as a single point �r. In this case, the
unstable region disappears. The critical ratio �=a�s can be

estimated by setting �r ¼ nðraÞ�1=3. (a�s is a function of T
and �.)
Thus, for an upper branch Bose gas characterized by the

point (� �=as, ��=T) on this diagram, it will only be
stable when �1=as <�1=a�sðT;�Þ, so that the unstable
region with a width �r in real space collapses to zero. The
vertical line labeled ðaÞ in Fig. 3 represents such a density.
Its density profile is shown in Fig. 4(a), which consists of
an upper branch inner core and an equilibrium branch outer
layer, both of which are free of Feshbach molecules.
Compared to the density profile of the lower branch
[dashed line in Fig. 4(a), which is close to Boltzmann
distribution], one sees a discernible kink in the upper
branch density. When ��=as exceeds ��=a�sðT;�Þ, such
as ðbÞ and ðcÞ in Fig. 3, the corresponding density profiles

T 4TF

1 0.5 0 0.5 1
0.8

1

1.2

1.4

1.6

1 kFas

E
E

0

T 4TF

0 0.1 0.2
0

5

10

15

1 kFac q

q
k F

FIG. 2 (color online). The upper panel is the energy density
across resonance at T ¼ 4EF ¼ 9:2Tc: rescaled by energy EoðTÞ
of a noninteracting system at the same temperature. The jump
represents a transition from the upper to the lower branch. Even
at this high temperature, interaction energy and the jump are
substantial fractions of the total energy. The lower panel shows
acðqÞ as a function of q for fixed n. The jump is due to the
sudden change in � as the system switches branches.
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are unstable, for they will contain a region of negative
compressibility as shown in Fig. 4(b) and 4(c).

From the equation of states for both the upper branch
and the equilibrium branch, Eq. (5) and (6), one can
determine the total number of particles once the chemical
potential at the center is specified. We also find that total
particle number N changes little with as for given� and T.
It is straightforward to show that N ¼ R

drnðrÞ has the

general form N ¼ AðT=!Þ3, where A is a dimensionless
number depending on (��=T, ��=as). We find that
A < 1. This is expected, as the critical number of Bose-
Einstein condensation in a harmonic trap with frequency!
is Nbec ¼ ð0:95Þ�1ðT=!Þ3 [17]. On the other hand, for the
trapped gas to be in the low-recombination regime, Eq. (1)
imposes constraints on the central density, and hence the

total particle number N. To find an estimate of this con-
straint, we approximate the actual density [say that in

Fig. 4(a)] by the Boltzmann form, which then gives N �
e�=TðT=!Þ3 [17]. Within the same approximation, we find

the quantity �n in Eq. (1) to be �n ¼ 33=4e�=T=�3, which then
implies

N <N� ¼ �ðT=!Þ2:5; � ¼ 33=4C�1=2 ¼ 1:024:

(10)

We have thus established the results (I) to (III).
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