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We report a surprising new result for wave turbulence which may have broader ramifications for general

turbulence theories. Spatial homogeneity, the symmetry property that all statistical moments are functions

only of the relative geometry of any configuration of points, can be spontaneously broken by the instability

of the finite flux Kolmogorov-Zakharov spectrum in certain (usually one dimensional) situations. As a

result, the nature of the statistical attractor changes dramatically, from a sea of resonantly interacting

dispersive waves to an ensemble of coherent radiating pulses.
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Introduction.—Spatial homogeneity, the assumption that
the property of translational symmetry, broken by each
member of a statistical ensemble of fields, is restored on
the average is one of the cornerstones of all turbulence
theories [1]. It has been used broadly since Taylor formu-
lated the theory of homogeneous turbulence and is
seldom questioned. It is an extraordinarily convenient as-
sumption for analysis. It means that statistical moments
huðxÞuðxþ rÞuðxþ r0Þ . . .i of the fields uðx; tÞ are func-
tions only of the relative geometry r, r0; . . . . Moreover, it
ensures that the generalized Fourier transforms AkðtÞ ¼
ð2�Þ�d

R1
�1 uðx; tÞ expð�ik � xÞdx are Dirac delta corre-

lated (d is the dimension). For fields of mean zero, it says
that the pair correlation is

hAkðtÞA�
k0 ðtÞi ¼ �ðk� k0Þnk; (1)

where the wave action density nk is the Fourier transform
of the two point average huðxÞu�ðxþ rÞi and �ðk� k0Þ is
the Dirac delta function.

The new result of this Letter is that the spatial homoge-
neity symmetry can be broken spontaneously by an insta-
bility that broadens the correlation (1). We will derive this
result for wave turbulence, the turbulence of weakly inter-
acting dispersive waves. We consider equations of motion

i
@u

@t
¼ Luþ �u2u� (2)

for a complex amplitude uðx; tÞ in one and in two spatial
dimensions. The linear operator L is defined by Leik�x ¼
!ke

ik�x with the eigenvalue !k ¼
ffiffiffiffiffiffi
gk

p
, k ¼ jkj, corre-

sponding to the dispersion of surface gravity waves
[2–5]. � is a constant. The dynamics of (2) depends cru-
cially on the sign of �. This is shown in the numerical
experiment of FIG 1, where Eq. (2) for one spatial dimen-
sion with external driving and damping is integrated in
time. The simulation starts with wave turbulence (small
amplitude, broad spectrum) initial conditions, and the sign
of the nonlinearity is � ¼ �1. After an integration over
1000 time units, the sign of the nonlinearity is switched to

� ¼ 1, and the integration is continued for another 1000
time units. The statistical properties for t � 1000, � ¼ �1
follow the predictions of wave turbulence theory, in par-
ticular, the Kolmogorov-Zakharov (KZ) steady state spec-
trum is achieved. For t > 1000, � ¼ 1 we observe that
wave trains with high amplitude merge into coherent ob-
jects traveling with the group velocity. We will now show
that switching the sign of � leads to an instability that
breaks the spatial homogeneity symmetry.
Unlike the case of general turbulence for which there is

no consistent closure for the hierarchy of cumulant equa-
tions, wave turbulence has a natural asymptotic closure [6].
All statistical quantities, the spectral energy density, the
long time behaviors of all higher cumulants, the structure
functions, can be calculated from the solution of a single
closed equation [7] for the isotropic wave action density
nk. The kinetic equation is

@nk
@t

¼ T½nk� ¼
X
r¼1

T2r½nk�; (3)

0
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FIG. 1 (color online). Contour plot of points juðx; tÞj2 > 0:035
in one spatial dimension with periodic boundary conditions for
Eq. (2) with damping and driving. Damping is applied to modes
both at very low and at high k, driving is applied to modes with
wave numbers above the low-k damping. The sign of the
nonlinearity is � ¼ �1 for t � 1000, and � ¼ 1 for t > 1000.
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where T½nk� is an asymptotic expansion capturing all the
relevant physics of wave resonant processes [6–8]. For the
equation of motion (2) its leading term is

T4½nk� ¼ 4��2
Z

nknk1
nk2

nk3
�

�
1

nk
þ 1

nk1

� 1

nk2

� 1

nk3

�

� �ð!þ!1 �!2 �!3Þ
� �ðkþ k1 � k2 �k3Þdk123: (4)

Added to (3) is an equation for the nonlinear renormaliza-
tion of the frequency

~! k ¼ !k þ 2�
Z

nkdk; (5)

where the integral extends k space. A key observation is
that whereas the kinetic equation is the same for both signs
of �, the frequency modification is not. The finite flux KZ
solution, an exact solution of (4) is

nk ¼ n0ðkÞ ¼ DP1=3k�d; (6)

where d is the dimension of k, P is the constant energy flux
and D a dimensional constant.

The remarkable new result is: We will show that if!k ¼ffiffiffiffiffiffi
gk

p
, d ¼ 1 and � ¼ 1, the KZ solution (6) is unstable to a

perturbation which breaks the spatial homogeneity sym-
metry. Such perturbations are introduced into the theory by
allowing the Fourier transform

nkðx; tÞ ¼
Z
huðx; tÞu�ðxþ r; tÞieik�rdr (7)

of the pair correlator to depend weakly on the base coor-
dinate x. This broadened wave action density then satisfies
a slightly revised kinetic equation with a Vlasov-like left-
hand side

@nk
@t

þrk ~!k � rxnk �rx ~!k � rknk ¼ X
r¼1

T2r½nk�; (8)

where ~!kðx; tÞ ¼ !k þ 2�
R
nkðx; tÞdk. The Vlasov addi-

tion is nonlinear by virtue of the renormalized frequency
~!k, and it vanishes for homogeneous (x-independent)
states. The space-independent solutions of (8) correspond
to solutions of the kinetic Eq. (3), such as the KZ solution

n0ðkÞ ¼ DP1=3k�d.
Analysis.—We study the stability of homogeneous iso-

tropic states n0ðkÞ by adding small space-dependent per-
turbations nkðx; tÞ ¼ n0ðkÞ þ �nkðx; tÞ with �nkðx; tÞ ¼
�ðkÞ expðik � x� i�tÞ where K is the wave vector and
� is the phase frequency of the modulation. The calcula-
tion parallels that of the analysis in [9] which examines
short wave—long-wave coupling in the context of optical
bump on tail instability. We assume, consistent with pre-
vious analyses of Balk and Zakharov [10] that n0ðkÞ is
stable with respect to spatially independent perturbations.
Inserting n0ðkÞ þ�ðkÞ expðik � x� i�tÞ in (8) yields

i�ðkÞð!0
kk̂ �K̂�cÞK�2ik̂ �K̂Kn00ðkÞ�

Z
�ðkÞdk¼�T4;

(9)

where K ¼ jKj, k̂ ¼ k=k, K̂ ¼ K=K, n00ðkÞ ¼ dn0=dk.
c ¼ �=K is the phase velocity of the modulation and
!0

k ¼ d!k=dk is the group velocity of linear waves.

Complex values of c and � will signal instability. �T4 is
a linear functional of �ðkÞ. To begin we ignore �T4, and
we will discuss its small influence later. Integrating over k
we obtain

1 ¼ 2�
Z n00ðkÞk̂ � K̂

!0
kk̂ � K̂� c

dk: (10)

We begin with one spatial dimension d ¼ 1. It is conve-

nient to set k̂ � K̂ ¼ 1 and allow k to be positive or negative

with !k ¼
ffiffiffiffiffiffiffiffiffi
gjkjp

. Integration by parts yields

1 ¼ 2�
Z 1

�1
n0ðkÞ!00

k

ð!0
k � cÞ2 dk: (11)

We analyze two distributions n0ðkÞ. The first is n0ðkÞ ¼
N0�ðk� k0Þ. Equation (11) yields ðc�!0

k0
Þ2 ¼ 2�N0!

00
k0
.

Stability depends on the sign of �!00
k0
which is �sgn� for

!k ¼
ffiffiffiffiffiffiffiffiffi
gjkjp

. Thus for � > 0, c is complex and the mono-
chromatic solution is modulationally unstable. This result
is qualitatively similar to the Benjamin-Feir-Lighthill cri-
terion for monochromatic waves. Next we take a KZ

spectrum with a spectral maximum at k0, n0ðkÞ ¼
DP1=3jkj�1 for jkj> k0 and n0ðkÞ ¼ 0 for jkj< k0. To
keep the total wave action finite we can cut off the spec-
trum (n0ðkÞ ¼ 0) also at high jkj, which corresponds to the
effect of viscous damping. Writing the right-hand side of
(11) as two integrals, over ðk0;1Þ and ð�1;�k0Þ, setting
k ! �k in the second, and making the transformations
k ¼ !2=g, ! ¼ !0�, !0 ¼

ffiffiffiffiffiffiffiffi
gk0

p
, gives

1þ �
Z 1

1

z2

�2

�
1

ðz� �Þ2 þ
1

ðzþ �Þ2
�
d� ¼ 0: (12)

The dimensionless parameter z ¼ g=ð2c!0Þ ¼ !0
0=c is the

ratio of group velocity at the spectral peak and the phase
velocity of the perturbation. A complex z indicates

an instability. The dimensionless parameter � ¼
4�DP1=3=!0, j�j � 1, the nondimensional energy flux,
essentially measures the weakness of the turbulence. Its
smallness is also important to guarantee (see [8]) that the

ratio of the linear and the nonlinear time scale tL=tNL ¼
!�1

k =ðnk= dnk
dt Þ, which is a function of the frequency ! and

is equal to the product of �2 and !2
0=!

2, remains small

throughout the range, !0 to 1, over which the KZ spec-
trum obtains. That ensures [8] that the wave turbulence
closure remains valid on the KZ solution of the kinetic
equation.
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Integrating (12) gives

1þ �

�
2þ 2

z
ln
1� z

1þ z
þ 1

1� z
þ 1

1þ z

�
¼ 0: (13)

For � small, the root z is close to unity and the leading
order of (13) is 1þ �=ð1� zÞ � 0 and the root is z �
1þ �. This shows that the phase speed of the disturbance
almost matches the group speed of the wave packet at the
spectral peak k0. For � and therefore � negative, the root
z � 1þ � of (13) is real and less than unity. For � and thus
� positive, we have a root jzj> 1. The appropriate
branches of the logarithm are now lnð1� zÞ � lnj1� zj 	
i�. Including the leading order imaginary term we obtain
1þ �ð	 2i�þ 1=ð1� zÞÞ � 0, so the root for � small is
z � 1þ �
 2i��2. The wave speed c ¼ �=K ¼ !0

0=z
is complex and the solution n0ðkÞ unstable. The instability
growth rate is of order �2. Interestingly, this matches the
inverse time scale for the spectrum to relax to the KZ state.

This shows that a small spatial inhomogeneity can be
enhanced by the interaction with the almost random waves
of homogeneous weak turbulence. Landau damping and
amplification of plasma oscillations provides a useful ana-
logue for the situation here. The ensemble of wave packets
with density n0ðkÞ plays the role of the electron distribution
whereas expðiK � x� i�tÞ is the perturbing wave. The
perturbing wave is amplified (damped) if the wave number
of the spectral peak lies to the right (left) of that of the
perturbing wavetrain for which cases Reð!0

k=cÞ is greater
(less) than unity.

In two dimensions d ¼ 2, we take the KZ distribution

n0ðkÞ ¼ DP1=3k�2Hðk� k0Þ, where H is the Heaviside

function and k ¼ jkj. Then n00ðkÞ¼DP1=3k�2�ðk�k0Þ�
2DP1=3k�3Hðk�k0Þ in (10). Integrating over the angular

coordinate �, cos� ¼ k̂ � K̂ and the variable !0 ¼ffiffiffiffiffiffiffiffi
g=k

p
=2 gives

1

8��
¼ 1

z
sin�1z� 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p � 3

4
(14)

for z ¼ !0
0=c, or with z ¼ sinð�Þ,

1

8��
¼ �cosecð�Þ � 1

4
secð�Þ � 3

4
: (15)

For� � 1, the roots of (14) and (15) are real for both signs
of �. To leading order, the root is �=2þ 2��. The per-
turbing wave train is neutrally stable. This shows that a
spatial inhomogeneity is not increased by the interaction of
waves in two dimensional weak turbulence.

Finally, we discuss the small correction due to �T4 on
the right-hand side of (13). Writing nkðx; tÞ ¼ n0ðkÞ þ
�ðkÞ expðiK � x� i�tÞ in T4½nk� and obtaining, after lin-
earization in �,

�T4 ¼ 4��2
Z
½fnk2

nk3
� nk1

nk2
� nk1

nk3
g�ðkÞ

þ P123fnk2
nk3

� nknk2
� nknk3

g�ðk1Þ�
� �ð!þ!1 �!2 �!3Þ
� �ðkþ k1 � k2 � k3Þdk123:

The upper indices of P123 denote the cyclic permutations
over 1, 2, 3. We compute this term for the one dimensional
case. Dividing (9) by ið!0

k � cÞK, integrating over k, di-
viding by

R1
�1 �ðkÞdk and nondimensionalizing all wave

numbers with k0 and frequencies with !0 (note !0
kk ¼

!k=2) gives��i�2I=2 on the right-hand side of (13). I is a
real dimensionless integral. Including this term we obtain a
higher order correction ��3I=2 in ImðzÞ of the unstable
mode expðiK � x� i�tÞ. The collision term has therefore
only a small effect on the instability, but eventually it will
erode the correlation that evolves from the instability.
Simulations.—The instability that we have described is a

statistical property of an ensemble of trajectories, whereas
the behavior shown in FIG. 1 is the manifestation of this
instability for a single trajectory. We now explore the
instability by following an ensemble of trajectories nu-
merically. First an ensemble of 400 000 initial conditions
is created. These initial states are random KZ-distributed
waves with an additional common small spatial inhomo-
geneity. Using this ensemble of initial conditions, the
equation of motion with � ¼ 1 is integrated over 70 time
units and, for comparison, the equation with � ¼ �1 is
integrated starting from the same initial conditions. No
external driving and damping is applied in this experiment.

λ=1,   =20 π/2048  k 

λ=1,   =30 π/2048  k 

λ=1,   =40 π/2048  k 

λ=−1,   =40 π/2048  k 

λ=−1,   =30 π/2048  k 

λ=−1,   =20 π/2048  k 

1.2

1

0
0.8

100

FIG. 2 (color online). Time evolution of the correlation
jCðk; K; tÞj2 ¼ jhAkðtÞA�

kþKðtÞij2=jhAkð0ÞA�
kþKð0Þij2 with K ¼

6�=2048 for an ensemble of 400 000 trajectories for the
Eq. (2) with � ¼ 1 and with � ¼ �1. The initial conditions
are Kolmogorov-Zakharov distributed nk � k�1 with a Gaussian
amplitude distribution and random phases for jkj � 20�=2048
and nk ¼ 0 for jkj< 20�=2048 (the wave number space is
��< k � �). A small spatial modulation is superimposed on
these random initial conditions, and this modulation is the same
for each member of the ensemble. The system is not externally
damped or driven. This correlation grows for � ¼ 1, reflecting
an instability of wave turbulence against spatially inhomoge-
neous perturbations. There is no such instability for � ¼ �1, and
the correlation decays.
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Figure 2 shows time evolution of the ensemble average
jhAkðtÞA�

kþKðtÞij2 for various values of k with the same

modulation K of the initial conditions. We observe that
jhAkðtÞA�

kþKðtÞij2 grows in time for � ¼ 1, indicating the

amplification of the small initial spatial inhomogeneity.
This shows that the nonequilibrium state of wave turbu-
lence is not a statistical attractor in this case. In contrast,
this correlation decays for � ¼ �1, which shows that
homogeneous wave turbulence is attractive and small spa-
tial inhomogeneities vanish. This decay effect can be at-
tributed to the nonlinear terms in (8). In particular, the
collision term will, via four wave interactions, remove
energy from the perturbing waves. Longer simulations
for the case � ¼ 1 show that the correlation eventually
decays after the initial surge. Again, we attribute this to the
nonlinearities in (8). The system eventually settles down at
a statistical attractor which inherits the spatial homogene-
ity symmetry of the equation of motion. This new state
becomes visible in Fig. 1 at high t, where moving localized
structures appear. We have studied these coherent struc-
tures and their influence on the statistical properties of
turbulence in [5].

Conclusions.—We have discovered an instability that
breaks the spatial homogeneity of wave turbulence by
enhancing small long-wave modulations. In this process,
the random waves of wave turbulence feed energy into
spatial modulations. We have shown this using a linear
stability analysis of the statistical state of homogeneous
wave turbulence. This analysis is based on the generic
kinetic equation with a Vlasov term (8). The results are
therefore expected to apply to many nonlinear wave sys-
tems and not just to the model (2). Our findings are con-
firmed by numerical simulations of an ensemble of
trajectories of Eq. (2) for wave turbulence initial conditions
with a small spatial inhomogeneity.

The instability occurs in (2) for the same sign of the
nonlinearity (� ¼ 1) for which monochromatic waves are
Benjamin-Feir unstable. In fact, the Benjamin-Feir-
Lighthill criterion follows from our analysis for a delta-
distributed spectrum. However, the breaking of spatial
homogeneity for a Kolmogorov-Zakharov spectrum is a
statistical process that is obtained by averaging over many
interactions of waves that decrease or increase spatial
inhomogeneity. Wave turbulence is neutrally stable for
� ¼ �1. We suppose that the Benjamin-Feir-Lighthill cri-
terion is a necessary condition for this instability.

The outcome crucially depends on the dimension:
Remarkably, isotropic wave turbulence in two dimensions
is more robust in that it is not subject to this instability. The
random waves transfer no energy to the inhomogeneity in
two dimensions, and the perturbation is neutrally stable.
Quasi-one-dimensional wave systems are apparently the
most vulnerable and likely candidates for this instability.

The nonequilibrium state that finally emerges from this
instability is radically different from wave turbulence. As

we have shown in [5] the system is then governed by
radiating pulses that lead to a spectrum that is steeper
than the Kolmogorov-Zakharov spectrum of wave turbu-
lence. Examples for the spontaneous formation of coherent
structures in turbulence are rogue waves in the ocean [11]
and in nonlinear optics [12], and solitons in nonlocal non-
linear media [13]. Radiating solitons have previously been
discussed in nonlinear optics [14]. We emphasize the point
that whereas spatial homogeneity is broken, eventually that
property is restored when there are enough coherent pulses
in the system. It is fascinating that the breaking of spatial
homogeneity is the means through which the system leaves
one unstable fixed point (the KZ solution) and reaches the
stable attractor of an ensemble of radiating pulses [5].
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