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We consider linear waves in compressible fluids in a uniform potential field, such as a gravity field, and

demonstrate that a particular type of wave motion, in which pressure remains constant in each fluid parcel,

is supported by inhomogeneous fluids occupying bounded or unbounded domains. We present elementary,

exact solutions of linearized hydrodynamics equations, which describe the new type of waves in the

coupled ocean-atmosphere system. The solutions provide an extension of surface gravity waves in an

incompressible fluid half-space with a free boundary to waves in compressible, three-dimensionally

inhomogeneous, rotating fluids.
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Waves in compressible fluids subject to external poten-
tial forces are encountered in many physical systems,
ranging from trapped quantum gases [1–4] to stars and
planet atmospheres [5,6]. Rather detailed studies have been
done in the geophysical context, where external forces are
due to Earth’s gravity field. In the ocean and atmosphere,
mechanical waves occur at scales from less than a centi-
meter to thousands of kilometers [7–9], play a key role in
the transfer of energy and momentum within and between
the ocean and the atmosphere [7,8,10], and to a large
degree control the weather and climate [11–13]. Exact
solutions of idealized hydrodynamic problems, known as
the Rossby, Kelvin, Lamb, and Poincaré waves, elucidate
the effects of the fluid’s buoyancy and compressibility,
Earth’s rotation, as well as topography and bathymetry,
on the wave processes, and provide much of the conceptual
foundation of modern geophysical fluid dynamics
[7–10,14]. However, these solutions do not encompass
the actual diversity of wave motions. An additional, dis-
tinct wave type is discussed in this paper. Here we present
new, elementary, exact solutions of linearized hydrody-
namics equations in a compressible fluid in a uniform
gravity field. The solutions describe waves, in which pres-
sure remains constant in each moving fluid parcel, in three-
dimensionally inhomogeneous fluids in bounded or
unbounded domains with or without rotation. In addition
to the Earth’s atmosphere and oceans, the incompressible
wave motion is likely to be a component of wave fields in
the atmosphere and interior of stars [5,6], as well as in
planetary atmospheres and, on smaller scales, in trapped
gases [1–4]. Identification of the new wave type advances
physical intuition about acoustic-gravity waves and the
dynamics of the coupled ocean-atmosphere system and
furnishes new benchmark problems to verify numerical
models of geophysical fluid dynamics.

Consider continuous small-amplitude waves in a fluid
with background (i.e., unperturbed by waves) pressure p0

and density �0 in a uniform gravity field with acceleration

g. The fluid is stationary and motionless in the absence of
waves, and the background pressure and density are related
by rp0 ¼ �0g. Linearization of the Euler, continuity, and
state equations with respect to wave amplitude leads to the
following set of equations [15,16] governing wave fields:

rp�!2�0wþðw �r�0Þg�c�2
0 ðpþw �rp0Þg¼ 0; (1)

r � wþ ðpþ w � rp0Þ=�0c
2
0 ¼ 0; (2)

where p and w are the pressure perturbation and fluid
particle displacement due to the wave, ! is wave fre-
quency, and c0 is the sound speed. Fluid velocity v ¼
�i!w. Time dependence expð�i!tÞ of the wave field is
assumed and suppressed. In Eqs. (1) and (2), we assume
wave propagation to be an adiabatic thermodynamic pro-
cess and disregard irreversible processes associated with
viscosity, thermal conductivity, and diffusion of admix-
tures such as salt in sea water and water vapor in atmos-
pheric air. This is the standard framework for analysis of
acoustic-gravity waves in ocean and atmosphere [7–9,14].
The governing equations (1) and (2) are supplemented

by boundary conditions. On a fluid-fluid interface,
the linearized boundary conditions [15,16] consist in
continuity of the normal displacement and the quantity
pþ w � rp0. The latter has the meaning of the
Lagrangian pressure perturbation, i.e., the pressure pertur-
bation in a moving fluid particle, as opposed to the Eulerian
pressure perturbation p at a fixed point in space. Only one
boundary condition is imposed on a free surface:

pþ w � rp0 ¼ 0: (3)

The physical meaning of the boundary condition (3) is that
the total pressure remains constant in the fluid particles
located on the free surface [16].
Without making any additional assumptions about the

propagation medium, let us consider a special kind of fluid
motion, in which there are no pressure perturbations in any
fluid particles; i.e., Eq. (3) holds throughout the fluid. For
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waves of this kind, conditions on free boundaries, if any,
are met automatically. At fluid-fluid interfaces, only the
kinematic condition of the normal displacement continuity
needs to be imposed. The governing equations (1) and (2)
become

rp�!2�0wþ ðw � rÞrp0 ¼ 0; r � w ¼ 0: (4)

According to Eq. (4), the divergence of the particle dis-
placement and, hence, velocity, equals zero; i.e., we are
dealing with an incompressible motion of a compressible
fluid. This, of course, is expected as there are no pressure
changes in fluid particles.

Introduce a Cartesian coordinate system with horizontal
coordinates x and y and vertical coordinate z increasing
upward. Then g ¼ ð0; 0;�gÞ. Application of the differen-
tial operator curl to both sides of the static equilibrium
equation rp0 ¼ �0g shows that the background density
is horizontally stratified: � ¼ �ðzÞ, while the sound speed
c can be a function of x, y, and z. From Eqs. (3) and (4) we
find

p ¼ �0gw3; wh � ðw1; w2; 0Þ ¼ k�1rhw3;

w3 ¼ Wðx; yÞ expðkzÞ; (5)

where rh ¼ ð@=@x; @=@y; 0Þ, k ¼ !2=g, and W is a solu-
tion of the two-dimensional (2-D) Helmholtz equation:

@2W=@x2 þ @2W=@y2 þ k2W ¼ 0: (6)

Note that the fluid motion described by Eq. (5) is irro-
tational, with �ip0=�0! being the velocity potential.
Lamb [14] considered linear acoustic-gravity waves in a
vertically stratified perfect gas and concluded, erroneously,
that irrotational motion is impossible unless dc20=dz ¼
�ð�� 1Þg, where � is the constant ratio of specific heats
(see Ref. [14], pp. 547–548). Lamb failed to recognize that
a trivial solution of his Eq. (11) can correspond to a non-
trivial wave motion, i.e., that a nontrivial wave motion can
be simultaneously irrotational (curl w ¼ 0) and incom-
pressible (r � w ¼ 0). It is straightforward to check that
our solution (5) satisfies Lamb’s Eq. (11) with arbitrary
stratification of the sound speed. Using the terminology
employed in the theory of mechanical waves in elastic
media (i.e., solids), the wave (5) corresponds to the defor-
mation of pure shear in the medium, and the wave should
be called a ‘‘shear wave.’’ The shear wave (5) exists despite
the absence of shear rigidity in the inviscid fluids we
consider. Instead, the restoring force is provided by the
gravity.

The sound speed does not enter Eqs. (5) and (6), and the
density can be an arbitrary piecewise continuous function
of z. This should be compared to the other known analytic
solution for acoustic-gravity waves in inhomogeneous flu-
ids, the Lamb wave, which assumes constant sound speed
and exponential stratification of the density [7,14].

Horizontal and vertical components of the displacement
w (5) share the same exponential dependence on the

vertical coordinate. Despite the exponential increase in
the displacement amplitude with z, the pressure (5) as
well as the power flux pv and wave energy densities [16]
decrease with z when �0 decreases with z sufficiently
rapidly. The solution (5) and (6) applies equally to un-
bounded fluid as well as to fluid limited from above
and/or from below by pressure-release surface(s). In a fluid
with piecewise continuous parameters and horizontal (in
the absence of the wave) interfaces, horizontal wh and
vertical w3 components of the particle displacement are
continuous and still given by Eq. (5); pressure perturba-
tions p are discontinuous at interfaces where density is
discontinuous (Fig. 1). According to Eq. (5), surfaces of
constant pressure coincide with surfaces of constant den-
sity in the wave. It should be emphasized that, as follows
from Eqs. (3) and (5), waves with no pressure variations in
fluid particles do not exist when a medium has a horizontal
boundary other than a free surface.
Equation (6) is satisfied by a superposition of 2-D plane

waves Wðx; yÞ ¼ expðiq � rÞ, q ¼ kðcos’; sin’; 0Þ with
arbitrary angular spectrum. In addition to homogeneous
plane waves, for which the horizontal wave vector q is real,
Eq. (6) is satisfied by inhomogeneous plane waves, for
which q ¼ qr þ iqi has the real qr and imaginary qi parts.
Dispersion relations for homogeneous and inhomogeneous
plane waves are, respectively, gq ¼ !2 and

q r � qi ¼ 0; q2r � q2i ¼ k2: (7)

In plane waves, wh ¼ k�1ðiqr � qiÞw3. Hence, particles
move along circles, which lie in planes parallel to qr and
making an angle arctanðqi=kÞ with the vertical plane; radii
of the circles increase exponentially with z (Fig. 2).
Horizontal displacements along qi are in phase, and those
along the perpendicular direction qr are a quarter-period
out of phase with the vertical displacement, while the
Eulerian pressure variations p are always in phase with
w3. In a particular case, when W is a plane wave and fluid
with the sound speed c ! 1 occupies half-space z < 0

FIG. 1 (color online). Vertical profiles of the background den-
sity �0 and amplitudes of wave-induced perturbations in the
Eulerian pressure p and the vertical displa0cement w3 of fluid
parcels.
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with a pressure-release boundary, Eq. (5) reduces to the
known solution (see Sec. 40.1 in Ref. [9]) for surface
gravity waves in a stratified incompressible fluid.

When fluid occupies a bounded domain, vertical
boundaries and interfaces have no effect on the vertical
distribution of the field and impose conditions only on the
function Wðx; yÞ, which is a solution of Eq. (6). A number
of boundary-value problems for Eq. (6) have been consid-
ered in the literature in an acoustic context [16] as well as
in the context of gravity waves in incompressible fluid [8],
including reflection from boundaries and interfaces as well
as guided propagation in the horizontal plane. Explicit
solutions of the boundary-value problem can be readily
found for various types of boundary conditions and for
various geometries (in the horizontal plane) of the bounda-
ries and/or interfaces.

Consider waves in a fluid half-space y < z tan� with a
plane rigid boundary y ¼ z tan�, 0< �<�=2 (Fig. 3).
The vertical extent of the fluid can be either infinite or
bounded from above (and/or from below) by a horizontal
free surface. Since the normal displacement of fluid parti-
cles vanishes on a rigid surface, we have w2 ¼ w3 tan� at
the boundary. Solving Eqs. (5) and (6), we find

Wðx; yÞ ¼ ½B1 expðikx= cos�Þ þ B2 expð�ikx= cos�Þ�
� expðky tan�Þ; (8)

where B1;2 are arbitrary constants. Equations (5) and (8)

give the particle displacement w as a superposition of two
inhomogeneous, three-dimensional plane waves, which
propagate horizontally with the phase speed ðg=!Þ cos�
and the group speed ðg=2!Þ cos� in directions parallel to
the sloping boundary. The relation between the real part of
the horizontal wave vector and frequency is given by!2 ¼
gqr cos� in agreement with Eq. (7). The amplitude of the
displacement vector (and of the vertical displacement w3)
decreases exponentially, when an observation point moves
downward parallel to the boundary, and remains constant,

when the observation point moves in the direction normal
to the boundary. The spatial distribution of pressure p (5)
depends on the density stratification and generally is not a
superposition of two three-dimensional plane waves. In
every horizontal plane, we have two plane waves propagat-
ing along the boundary and exponentially attenuating with
distance from the boundary.
Note that in a fluid with a sloping boundary, unlike

unbounded fluid or fluid with a vertical boundary, the waves
(5) cannot propagate in an arbitrary horizontal direction. In
an incompressible fluid of constant density with a horizontal
free surface, our result (5) and (8) reduces to Stokes’s
solution for an edge wave along a sloping beach [17].
Now, consider waves in a compressible fluid rotating

along a vertical axis with angular velocity� ¼ ð0; 0; f=2Þ.
f is referred to as the Coriolis parameter. To account for the
Coriolis force acting on moving fluid particles in a rotating
reference frame, the term �2i!�� w should be added in
the left side of Eq. (1). Then, for waves in which there are
no Lagrangian pressure perturbations, from Eqs. (1)–(3)
we find

p ¼ �0gw3;

wh ¼ expðkzÞ
kð1� f2=!2Þ

�
rhW � 2i

!
��rhW

�
;

w3 ¼ Wðx; yÞ expðkzÞ; (9)

where Wðx; yÞ is a solution of the Helmholtz equation (6)
with k2 replaced by k2ð1� f2=!2Þ. It is satisfied by an

FIG. 2 (color online). Surfaces of constant pressure and con-
stant density in a homogeneous plane wave propagating along
the x axis (solid lines) and in the absence of waves (dashed
lines). Also shown are circular trajectories of fluid particles and
the vector of their velocity at different phases of the wave. Large
arrow shows the direction of wave propagation. FIG. 3 (color online). Sketch showing geometry of the edge

wave problem. Arrow 1 shows the direction of propagation of an
edge wave that exists at any frequency and for the arbitrary slope
of the plane rigid surface. Arrow 2 shows the direction of
propagation of an additional edge wave, which exists at !>
jfj sin� in a rotating fluid and at any frequency in a nonrotating
(f ¼ 0) fluid. The propagation directions are shown for the
Northern Hemisphere (f > 0) and are reversed in the Southern
Hemisphere. Arrow 3 shows the direction of the exponential
decrease of the amplitude of the fluid velocity. All three arrows
are parallel to the rigid boundary.
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arbitrary superposition of homogeneous and inhomogene-
ous, 2-D plane waves expðiq � rÞ provided

q r � qi ¼ 0; q2r � q2i ¼ !2ð!2 � f2Þ=g2: (10)

Real and imaginary parts of the wave vector (and, hence,
the directions of the fastest variations of wave amplitude
and phase in the horizontal plane) are orthogonal.
Homogeneous plane waves exist only when wave
frequency exceeds the Coriolis parameter. Phase and group
velocities of the wave are parallel to the horizontal wave

vector q and have magnitudes cph ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � f2

p
and

cgr ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � f2

p
=ð2!2 � f2Þ, respectively. When fre-

quency increases from jfj to infinity, the phase speed
steadily decreases from infinity to zero; the group speed
tends to zero, when frequency tends to f or infinity, and has

a maximum cgr ¼ 2�3=2g=jfj at ! ¼ jfj ffiffiffiffiffiffiffiffi
3=2

p
. Unlike the

homogeneous plane waves, the inhomogeneous waves
exist at all frequencies. At !> jfj, the phase speed of
the inhomogeneous waves is smaller than that of the
homogeneous waves.

When f � 0, according to Eq. (9), motion in the wave
remains incompressible (r � w ¼ 0) but is no longer irro-
tational. In particular, the vertical component of the vor-
ticity vector curl v is kfw3. Equation (9) shows that the
effects of fluid rotation on wave motion become negligible
at frequencies ! � jfj, as expected.

Let a fluid occupy a half-space y < 0with a rigid vertical
boundary at y ¼ 0. For a plane wave Wðx; yÞ ¼
expðiq1xþ iq2yÞ that satisfies the boundary condition at
y ¼ 0, according to Eq. (9) we have q2 ¼ i!�1fq1. Of
physical interest are waves that remain finite in each hori-
zontal plane. From Eqs. (9) and (10) we find the only
solution of this kind:

w3 ¼ const� expð�ikxsgnfþ kjfjy=!þ kzÞ: (11)

It describes a boundary (edge) wave that propagates along
the vertical rigid wall in a direction that is determined
uniquely by the geometry of the wall and the direction of
rotation. A change of sign of the Coriolis parameter f (as
occurs when moving from the Northern to the Southern
Hemisphere) reverses the direction of propagation of the
edge wave along the Ox axis. Note also that the edge wave
propagates in opposite directions along western and east-
ern walls. The phase speed of the edge wave is independent
of f and equals the phase speed of the free wave in the
absence of vertical boundaries and rotation.

In many respects (such as dependence of the direction of
propagation on the sign of the Coriolis parameter and
geometry of the boundary, and the relation between the
phase speeds of the edge and a respective free wave), the
edge wave (11) is similar to the Kelvin waves. The Kelvin
wave is an edge (boundary) wave propagating along
a vertical rigid wall in shallow water (i.e., in a finite
layer of incompressible fluid of constant density between

horizontal free and rigid boundaries) [8]. The edge wave
(11) is a ‘‘deep-water’’ counterpart of the Kelvin wave. It is
unaffected by fluid compressibility, density stratification,
and presence of horizontal free surface(s).
Consider a fluid half-space y < z tan� with a plane rigid

boundary (Fig. 3). The vertical extent of the fluid can be either
infinite or bounded from above (and/or from below) by a
horizontal free surface. For a plane-wave solutionWðx; yÞ ¼
expðiq1xþ iq2yÞ that satisfies the condition w2 ¼ w3 tan�
on the boundary, from Eqs. (9) and (10), we find

q1 ¼ k

cos�

�
�1� f

!
sin�

�
; q2 ¼ �ik

cos�

�
sin�� f

!

�
:

(12)

The dispersion equation of the edgewaves (12) can bewritten
as gqr cos� ¼ !j!� f sin�j. For the wave amplitude to
remain finite in the horizontal plane, there should be
Im q2 	 0. When jfj<! sin�, both solutions (12) satisfy
this requirement, and we have two distinct edge waves,
which, as in the case of the sloping rigid boundary in a
nonrotating fluid, propagate along the Ox coordinate axis in
opposite directions along the boundary. When jfj>! sin�,
only one of the horizontal wave vectors (12), namely,

q1 ¼ � ksgnf

cos�

�
1þ jfj

!
sin�

�
;

q2 ¼ �ik

cos�

�
sin�þ jfj

!

�
;

(13)

satisfies the inequality Im q2 	 0. Then, there exists only one
edge wave, with its direction of propagation determined by
the direction of the fluid rotation. This is similar to what was
found in the case of a vertical rigid wall in rotating fluid. In
fact, at � ! 0, the solution described by Eq. (13) reduces to
the solution (11) we obtained for the vertical wall.
In summary, incompressible wave motion, in which

pressure and density remain constant in each moving fluid
parcel, is found to be supported by inhomogeneous com-
pressible fluids occupying either unbounded domains or
domains with horizontal pressure-release surfaces and
sloping rigid boundaries. Gravity is the restoring force in
the incompressible wave motion. The waves are described
by simple, exact solutions of linearized equations of hydro-
dynamics of inhomogeneous, compressible fluid in a
uniform gravity field. The exact solutions are valid under
surprisingly general assumptions about the environment
and reduce to some classical wave types in appropriate
limiting cases. Allowance for three-dimensional variation
of the sound speed and for arbitrary density stratification,
including density discontinuities, makes the exact solu-
tions an attractive model of waves in a coupled ocean-
atmosphere system.
Similar to the other analytical solutions employed in

geophysical hydrodynamics such as the Rossby, Kelvin,
Lamb, Poincaré, and Stokes waves, the body and edge
waves described by Eqs. (5), (8), (9), and (12) are exact
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solutions of idealized problems, which only approximately
represent the real ocean and atmosphere. Further research
is required to investigate the effects of dissipation, non-
linearity, finite ocean depth, background currents and
winds, variation of the Coriolis parameter, etc., on the
waves discussed in this paper.
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