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The motion of a charged particle is influenced by the self-force arising from the particle’s interaction

with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle

and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for

particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing

limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a

Schwarzschild black hole.
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In spite of the impressive progress made towards tack-
ling the two-body problem in general relativity [1], there
remains an important regime that appears to be intractable
by the methods of numerical relativity. When the system
consists of a massive black hole (M * 106M�) and a stellar
mass companion (m� 10M�), the disparity of length
scales characterizing this black hole binary proves to be a
significant roadblock for existing numerical relativity
codes.

The dynamics of such a binary is intuitively simple: A
slow adiabatic inspiral of the small black hole towards the
bigger one is followed by an abrupt plunge towards the
latter’s event horizon. However, for the purposes of gravi-
tational wave astronomy, this qualitative picture is inade-
quate. The ubiquity of supermassive black holes residing in
galactic centers has made extreme-mass-ratio inspirals
(EMRIs) one of the more prominent predicted sources of
low-frequency gravitational waves for future space-based
missions [2]. The science we will gain from these
sources—among them, precision tests of general relativity
in the strong-field regime [3] and a better census of black
hole populations [2,4]—rests on our ability to model them
to an exquisite degree of accuracy. Specifically, we wish to
be able to track the phase of their gravitational waveforms
throughout the long inspiral.

In the self-force approach to modeling EMRIs, one
ignores the internal dynamics of the smaller black hole
and treats it as a massive particle that distorts the spacetime
geometry of the bigger partner. An EMRI is then equiva-
lent to a charged particle moving in a black hole spacetime.
But for this approach to suffice, the motion of the particle
and the resulting waveform need to incorporate self-force
effects arising from the interaction of the particle with its
own field.

Evaluating the self-force is a difficult, though by now
well understood, process [5,6]. In a curved spacetime, the
field generated by a particle at one time backscatters off the
curvature and interacts with the particle at a much later
time. Consequently, the self-force at any given instant
depends on the particle’s entire past history [7]. This
restricts the usefulness of purely analytical self-force cal-
culations mainly to astrophysically uninteresting cases [8].
On the other hand, the distributional nature of the point
source makes numerical evaluation of the self-force tech-
nically involved. The retarded field diverges at the location
of the particle, thus requiring a delicate regularization to
extract the finite self-force [6]. A practical scheme for
dealing with this difficulty exists; this is the spherical-
harmonic-based mode-sum method of Barack and Ori
[9]. This method has been tremendously successful for
self-force calculations based on a specified particle orbit
[10–13]. However, it has not yet been applied to compute
the self-force based on an evolved orbit.
A problem that has resisted solution for a long time is the

computation of self-consistently self-forced orbits and their
corresponding waveforms. These are orbits that reflect the
true motion of the particle as it is driven by its actual local
field. In principle, these self-consistent orbits can be ob-
tained only by simultaneously solving the equations gov-
erning the coupled dynamics of the particle and its field.
This notion of self-consistency is what we wish to high-

light, particularly because a recent manuscript [14] also
reports on self-forced orbits, though not of the sort we
present here. In that work, the applied self-force at some
instant is not what arises from the actual field at that same
instant. Instead, this applied self-force is what would have
resulted if the particle were moving for all eternity along
the geodesic that only instantaneously matches the true

PRL 108, 191102 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
11 MAY 2012

0031-9007=12=108(19)=191102(5) 191102-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.191102


orbit; it is the ‘‘geodesic’’ self-force and not the self-
consistent self-force. It is quite likely that the error
incurred by this assumption becomes negligible in the
adiabatic limit, for which the particle stays close to the
instantaneous geodesic for sufficiently long times. We
emphasize, however, that this is presently just an expecta-
tion rather than a demonstrated fact. Rigorously assessing
its validity requires comparison with fully self-consistent
orbits.

In this Letter, we present for the first time such fully self-
consistent orbits and waveforms, albeit for a radiating
scalar charge in the Schwarzschild spacetime. An example
is displayed in Figs. 1 and 2.

Effective source approach.—A novel strategy for self-
force calculations was proposed [15] to address the diffi-
culties arising from a �-function source. Its core idea is to
refrain from solving the retarded field altogether and to
work instead with the equation for a field �R from which
the self-force is readily computed: f� � �qr��

R, where �q
is the charge of the particle. The effective source
Sðx�jz�ð�Þ; u�ð�ÞÞ for �R is C0 (continuous but not differ-
entiable) by construction at the location of the particle, in
contrast to the traditional �-function source for point

particles. Like the �-function source, S depends on the
particle’s position z�ð�Þ and four-velocity u�ð�Þ. (A simi-
lar approach is independently being pursued in Ref. [16],
the main difference there being that it uses a mode decom-
position in the azimuthal direction). The strategy rests on
Detweiler and Whiting’s insight [17] that there exists a
smooth solution to the vacuum field equation to which the
self-force can be fully attributed. This solution is just the
difference between the retarded field �ret and a locally
constructible singular field �S, which is the curved space-
time analogue of a ‘‘Coulomb’’ field that does not contrib-
ute to the self-force. Our approximation to the regular field
�R differs from the smooth Detweiler-Whiting solution by
terms that scale as Oð�3Þ as � ! 0, where � is some
appropriate measure of distance from the particle. It is
thus only a C2 approximation to the Detweiler-Whiting
vacuum solution, but it nevertheless gives the same self-
force. The limited differentiability of �R comes from the
inability to write down an explicit expression for the full
singular field from which the effective source is con-
structed. Generally, only approximate expressions for �S

are known [11]. The construction of our expression for S is
described in detail elsewhere [18].
With the effective source at hand, one needs to solve the

following system of equations:

h�R ¼ S½xjzð�Þ; uð�Þ�; (1)

Du�

d�
¼ a� ¼ �q

mð�Þ ðg
�� þ u�u�Þr��

R; (2)

dm

d�
¼ � �qu�r��

R; (3)

where mð�Þ is the rest mass of the particle. Quinn [19]
found that the rest mass is dynamically modified by the
component of the self-force tangent to the four-velocity;
this is reflected in Eq. (3). In all our simulations, we take
the initial rest mass mð� ¼ 0Þ to beM. Because of the way
S is constructed, �R is equal to the retarded field in the
wave zone. Thus, by solving the system of equations
above, one obtains not only self-forced orbits but their
corresponding waveforms as well (see Figs. 1 and 2).
We recently developed code that solves Eq. (1) for a

specified geodesic in the Schwarzschild spacetime [20].
Comparing with Ref. [12], we find that our main source of
error is high frequency noise due to nonsmoothness of the
effective source in the vicinity of the worldline. Most of the
time the amplitude of this noise is small, but it reaches a
peak of about 2% of the value of the self-force at periapsis.
We then evolve self-consistent orbits by supplementing

the scalar field evolution with an orbit integrator. Together
they allow solving Eqs. (1) and (2), simultaneously. We
deal with the particle motion in two ways: first by straight-
forward integration of Eq. (2) and second by adopting
the osculating orbits framework described in Ref. [21].
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FIG. 1 (color online). Orbits for neutral and charged particles
starting at p ¼ 7:2, e ¼ 0:5. The orbital evolution is started
close to apastron (at t ¼ t1), and the dots represent events at
times t1 ¼ 400M, t2 ¼ 600M, t3 ¼ 1100M, t4 ¼ 1300M,
t5 ¼ 1800M, and t6 ¼ 2043:8M, the instant of plunge. The
coordinates fx; yg ¼ fr cos�; r sin�g are Cartesian coordinates
in the equatorial plane.
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FIG. 2 (color online). Waveforms from self-consistently
evolved orbits as detected by an observer located in the orbital
plane at Iþ.
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The first method is more general in that it allows us to track
the motion of the particle all the way to the event horizon.
On the other hand, the second method, which works only
for bound orbits, allows us to more readily identify aspects
of the evolution that would be completely missed by
methods relying on flux-averaging and balance arguments.
For the regimes in which both methods are valid, we find
the resulting orbits in excellent agreement.

Self-consistent orbits.—The spherical symmetry of the
Schwarzschild geometry implies that test-particle orbits
may always be described by motion in the � ¼ �=2 plane.
The orbits are then characterized by conserved quantities ~E
and ~L, the particle’s energy and angular momentum per
unit mass, respectively. Bound orbits are those for which
~E< 1 and ~L � 2

ffiffiffi

3
p

M. These possess two radial turning
points r� (r� < rþ), the periapsis and apoapsis. Following
Refs. [21,22], these orbits can be parametrized in terms of a
dimensionless semilatus rectum p and eccentricity e, such
that r� ¼ pM=ð1� eÞ. This p-e parametrization is geo-
metrically informative: p is a measure of the size of the
orbit, while e is a measure of deviation from circularity. We
note, however, that it is meaningful only for the space of

bound orbits for which f ~E< 1; ~L > 2
ffiffiffi

3
p

Mg is mapped onto
f0 	 e < 1; p � 6þ 2eg. The separatrix p ¼ 6þ 2e cor-
responds to unstable circular orbits and represents the
boundary in p-e space separating the bound from plunging
orbits.

In this parametrization, orbits are described by

rðtÞ ¼ Mp

1þ e cosð	� wÞ ; (4)

d�

dt
¼

�

1� 2Mr0

r� 2M

�


 ½p� 2� 2e cosð	� wÞ�½1þ e cosð	� wÞ�2
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p3½ðp� 2Þ2 � 4e2�p
;

(5)

where r � rðtÞ, r0ðtÞ � dr
dt , p � pðtÞ, e � eðtÞ, 	 � 	ðtÞ,

and w � wðtÞ are functions of the Kerr-Schild time coor-
dinate t and where 	ðtÞmonotonically increases with t. For
geodesic motion, pðtÞ, eðtÞ, and wðtÞ remain constant; they
do, however, evolve under the influence of the self-force.

The orbit we consider here starts at p0 ¼ 7:2, e0 ¼ 0:5.
In Fig. 1, we display an evolved orbit with dimensionless
charge q :¼ �q=M ¼ 1=32, alongside a test-particle orbit
for reference. Certain reference points along the orbit are
identified to ease comparison with our other plots. As

initial data, we choose �Rðt¼0Þ¼0 and _�Rðt ¼ 0Þ ¼ 0
and set the particle initially moving along the geodesic
specified by p0 ¼ 7:2, e0 ¼ 0:5. This choice results in a
burst of junk radiation, which contaminates the computed
self-force at early times but eventually goes off the grid. By
around t ¼ 200M, the evolved field �R settles down to
give the appropriate geodesic self-force, as seen in Fig. 5.

At t ¼ 400M, when the particle is very close to apoapsis,
the computed self-force is allowed to act on the particle,
and the system of equations (1)–(3) is evolved simulta-
neously for all subsequent times. For this particular case
(q ¼ 1=32), the particle makes approximately 16 revolu-
tions (� 4 full radial cycles) before reaching the horizon.
Self-forced orbits can also be tracked in p-e space. In

Fig. 3, we observe that an oscillating and secularly increas-
ing eccentricity accompanies the monotonic decrease in p.
This secular increase is a generic feature of strong-field
orbits under the influence of radiation reaction [22]. The
eccentricity oscillations, on the other hand, are a new
feature of self-forced orbits not seen by flux-averaged
models. They are due to the intrinsic periodicity in the
local self-force that goes with the (quasi)periodic motion
of the particle around the black hole. Indeed, it is easy to

determine that _~E ¼ �aSFt and _~L ¼ aSF� . A decrease in ~E,

while keeping ~L constant, leads to a decrease in e, while a
decrease in ~L, keeping ~E constant, tends to increase e. The
self-force always decreases both ~E and j ~Lj, but it does so at
different rates depending on where the particle is. This
competition between periodically varying loss rates is
what leads to the oscillatory behavior in e.

Since _~E and _~L scale as q2, we expect that, starting from
the same initial conditions, the time it takes a particle to
reach the separatrix (equivalently, the number of radial
cycles) should scale approximately as 1=q2. This is con-
firmed by our results. For q ¼ 1=8, the particle crosses the
separatrix and plunges before completing one radial cycle.
For q ¼ 1=16, 1=32, and 1=64, the particle plunges after
one, four, and 16 full radial cycles, respectively.
It is difficult to disentangle dissipative and conservative

effects of the self-force in a self-consistent evolution, since
a reference geodesic [13,23,24] or an explicit expression
for the force [21] is not available. Nevertheless, it is clear
that the p-e tracks do not fully characterize the orbital
evolution. The osculating elements fp; eg are in one-to-one
correspondence with f ~E; ~Lg, whose rates of change are
determined only by aSFt and aSF� . The r component of the

self-acceleration cannot be inferred from the p-e tracks
alone, and instead its effect manifests in the secular change
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FIG. 3 (color online). Orbital evolution in p-e space, for an
orbit that begins with p ¼ 7:2, e ¼ 0:5. Each oscillation in these
tracks corresponds to one full radial cycle.
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of the positional elements [21], an example of which isw in
Fig. 4. The observed changes in w are completely missed
by flux-averaged approximations.

The self-acceleration and mass change along the orbit is
shown in Fig. 5. Only ar and a� are plotted here; the third
component at is easily determined from the orthogonality
condition u�a

� ¼ 0. Inconsistent initial data contaminate
the self-force early on, but this radiates away before self-
consistent evolution starts at t ¼ 400M. The self-force
depends most sensitively on the radial position of the
particle, with its strength increasing the closer the particle
is to the black hole. There is a small noticeable change in
the extrema of the self-force, but it is possible that this
is mainly due to the small corresponding shifts in the
extremal radii of the orbit. These properties likely describe
the geodesic self-force as well; it will be instructive to
compare self-consistent and geodesic self-forces.

Earlier we reported an upper bound of 2% on the error in
our self-force calculation. While this may appear sizable,
we reiterate that this is merely an upper bound which
is reached only for very brief portions of the orbit. Our
agreement with the results of Ref. [12] is, in fact, signifi-
cantly better throughout most of the orbit. By performing
a higher resolution run, we found that the maximum

amplitude of the error was halved. The corresponding
phase at separatrix crossing, however, changed only very
slightly (� 0:01%). This suggests that the noise in the self-
force does not significantly affect the phase evolution for
the length of the runs we consider here.
Discussion.—We summarize by emphasizing a few

points. First, our time domain 3D code is versatile: It is
not limited to low eccentricities, equatorial orbits, or even
the Schwarzschild spacetime. An ongoing challenge is to
devise more efficient ways to evaluate the complicated
expression for the effective source in the Kerr spacetime.
This would, for example, allow one to check if the recently
discovered Flanagan-Hinderer resonances [25] persist in a
self-consistent orbit. Second, our approach makes it pos-
sible to assess the adiabatic argument on which Ref. [14] is
based or, for that matter, any other proposal for the com-
putation of self-forced orbits. Third, our code readily gives
self-forced waveforms at Iþ (see Fig. 2). These waveforms
did not require any postprocessing after the computation of
the orbit; instead, both the orbit and waveform are calcu-
lated simultaneously. Finally, it is possible to generalize
our approach to the more important gravitational case. But
in that context, we stress that care is needed in handling
delicate gauge conditions [26] and possible instabilities
that may be brought forth by the nonradiative low multi-
poles of the metric perturbation [27]. This represents the
next major phase of development for the effective source
program.
As is to be expected from a 3D code, the computed self-

force along an orbit is limited in accuracy compared to
other methods. Further development will be required to
improve on this with limited computational resources.
Moreover, the code is too slow for the task of mass-
producing waveforms that will sufficiently sample the
entire EMRI parameter space. However, we emphasize
that this is not the objective of our approach. The true
value of our work lies in its ability to validate assumptions
and predictions arising from all other (presumably faster)
approximate methods. Our results provide the first oppor-
tunity for these proposals to demonstrate that they indeed
capture all the relevant features of self-consistent orbits
and waveforms.
The authors thank Eric Poisson, Abraham Harte, Leor

Barack, Sam Gralla, Luis Lehner, and Frank Löffler for
helpful comments and many fruitful discussions that
helped shape this work and Roland Haas for sharing nu-
merical data for the scalar self-force. Portions of this
research were conducted with high performance computa-
tional resources provided by the Louisiana Optical
Network Initiative [28] and also used the Extreme
Science and Engineering Discovery Environment, which is
supported by National Science Foundation Grant No. OCI-
1053575 (allocation TG-MCA02N014). Some computa-
tions were also performed on the Datura cluster at the
Albert Einstein Institute.
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